Skip to main content
Log in

Preparation and adsorption efficiency of sodium dodecyl sulfate modified palygorskite towards Sr(II) ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This exploratory research focused on the adsorption of Sr(II) on the sodium dodecyl sulfate modified palygorskite (SDS/Pal). The ion exchange reactions existed, and the elements Mg, Al, Si and Fe on the Pal were exchanged by element Sr(II). The adsorption process could be well described by the pseudo-second-order kinetics and Langmuir model. The adsorption capacity increased from 24.91 to 61.87 mmol g−1 with the increase of initial concentration from 10.0 to 100.0 mg L−1. SDS/Pal is potential for the adsorption of Sr(II) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozeroglu C, Bilgic OD (2015) Use of the crosslinked copolymer functionalized with acrylic acid for the removal of strontium ions from aqueous solutions. J Radioanal Nucl Chem 305:551–565. https://doi.org/10.1007/s10967-015-4019-3

    Article  CAS  Google Scholar 

  2. Boyer A, Ning P, Killey D et al (2018) Strontium adsorption and desorption in wetlands: role of organic matter functional groups and environmental implications. Water Res 133:27–36. https://doi.org/10.1016/j.watres.2018.01.026

    Article  CAS  PubMed  Google Scholar 

  3. Corcho-Alvarado JA, Balsiger B, Sahli H et al (2016) Long-term behavior of Sr-90 and Cs-137 in the environment: case studies in Switzerland. J Environ Radioact 160:54–63. https://doi.org/10.1016/j.jenvrad.2016.04.027

    Article  CAS  PubMed  Google Scholar 

  4. Zhang R-L, Xu J, Gao L et al (2020) Performance and mechanism for fluoride removal in groundwater with calcium modified biochar from peanut shell. Sci Adv Mater 12:492–501. https://doi.org/10.1166/sam.2020.3620

    Article  CAS  Google Scholar 

  5. Tsedenbal B, Hussain I, Lee JE, Koo BH (2020) Removal of lead contaminants with gamma-Fe2O3 nanocrystals. Sci Adv Mater 12:422–426. https://doi.org/10.1166/sam.2020.3654

    Article  CAS  Google Scholar 

  6. Ma Y-X, Li X, Shao W-J et al (2020) Fabrication of 3D porous polyvinyl alcohol/sodium alginate/graphene oxide spherical composites for the adsorption of methylene blue. J Nanosci Nanotechnol 20:2205–2213. https://doi.org/10.1166/jnn.2020.17193

    Article  CAS  PubMed  Google Scholar 

  7. Fan G, Huang X, Li D, Li A (2020) TiO2-Graphene 3D hydrogel supported on Ni foam for photoelectrocatalysis removal of organic contaminants. J Nanosci Nanotechnol 20:2645–2649. https://doi.org/10.1166/jnn.2020.17190

    Article  CAS  PubMed  Google Scholar 

  8. Baysal A, Tokman N, Akman S, Ozeroglu C (2008) Slurry analysis after lead collection on a sorbent and its determination by electrothermal atomic absorption spectrometry. J Hazard Mater 150:804–808. https://doi.org/10.1016/j.jhazmat.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Feng Y, Jiang J, Yao J (2018) Designing of recyclable attapulgite for wastewater treatments: a review. ACS Sustain Chem Eng 7:1855–1869. https://doi.org/10.1021/acssuschemeng.8b05823

    Article  CAS  Google Scholar 

  10. Wang H, Wang X, Ma J et al (2017) Removal of cadmium (II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater. J Hazard Mater 329:66–76. https://doi.org/10.1016/j.jhazmat.2017.01.025

    Article  CAS  PubMed  Google Scholar 

  11. Peredo-Mancilla D, Dominguez H (2016) Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: a computer simulation study. J Mol Graph Model 65:108–112. https://doi.org/10.1016/j.jmgm.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  12. Zuo R, Jin S, Yang J et al (2019) Removal of strontium from aqueous solutions by sodium dodecyl sulfate-modified palygorskite. J Radioanal Nucl Chem 321:151–159. https://doi.org/10.1007/s10967-019-06581-y

    Article  CAS  Google Scholar 

  13. Wei Y, Song M, Yu L et al (2019) ScienceDirect Hydroxyl-promoter on hydrated Ni- (Mg, Si) attapulgite with high metal sintering resistance for biomass derived gas reforming. Int J Hydrog Energy 44:20056–20067. https://doi.org/10.1016/j.ijhydene.2019.06.049

    Article  CAS  Google Scholar 

  14. Teng Y, Liu Z, Yao K et al (2019) Preparation of attapulgite/CoFe2O4 magnetic composites for efficient adsorption of tannic acid from aqueous solution. Int J Environ Res Public Health 16:1–17

    Google Scholar 

  15. Zhang W, Qian L, Ouyang D et al (2019) Chemosphere effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization. Chemosphere 221:683–692. https://doi.org/10.1016/j.chemosphere.2019.01.070

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Dong W, Tian G et al (2019) Highly ef fi cient self-template synthesis of porous silica nanorods from natural palygorskite. Powder Technol 354:1–10. https://doi.org/10.1016/j.powtec.2019.05.075

    Article  CAS  Google Scholar 

  17. Wang L, Shi Y, Yao D et al (2019) Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study. Chem Eng J 366:569–576. https://doi.org/10.1016/j.cej.2019.02.114

    Article  CAS  Google Scholar 

  18. Liu D, Zheng H, Yang W, Chen Y (2019) Efficient removal of Sr (II) from aqueous solution by melamine—trimesic acid modified attapulgite composite. J Radioanal Nucl Chem 321:97–108. https://doi.org/10.1007/s10967-019-06570-1

    Article  CAS  Google Scholar 

  19. Baig U, Uddin MK, Gondal MA (2020) Removal of hazardous azo dye from water using synthetic nano adsorbent: facile synthesis, characterization, adsorption, regeneration and design of experiments. Coll Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2019.124031

    Article  Google Scholar 

  20. Boukhelkhal A, Benkortbi O, Hamadache M et al (2016) Adsorptive removal of amoxicillin from wastewater using wheat grains: equilibrium, kinetic, thermodynamic studies and mass transfer. Desalin Water Treat 57:27035–27047. https://doi.org/10.1080/19443994.2016.1166991

    Article  CAS  Google Scholar 

  21. Ortaboy S, Atun G (2014) Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution. Ann Nucl Energy 73:345–354. https://doi.org/10.1016/j.anucene.2014.07.003

    Article  CAS  Google Scholar 

  22. Zhou Y, Liu X, Xiang Y et al (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273. https://doi.org/10.1016/j.biortech.2017.08.178

    Article  CAS  PubMed  Google Scholar 

  23. Fan HT, Sun W, Jiang B et al (2016) Adsorption of antimony(III) from aqueous solution by mercapto-functionalized silica-supported organic-inorganic hybrid sorbent: mechanism insights. Chem Eng J 286:128–138. https://doi.org/10.1016/j.cej.2015.10.048

    Article  CAS  Google Scholar 

  24. Zhou A, Wang J, Lin Y et al (2017) Adsorptive removal of trace uranium ions from simulated wastewater with FeCl3-modified attapulgite with sodium alginate beads. Desalin Water Treat 21744:1–10. https://doi.org/10.5004/dwt.2017.21744

    Article  Google Scholar 

  25. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  26. Freundlich HMF (1906) Über die absorption in Lösungen. Z Phys Chem 57:385–470. https://doi.org/10.1016/j.jclepro.2017.04.078

    Article  CAS  Google Scholar 

  27. Tugrul AB, Haciyakupoglu S, Erenturk SA et al (2013) Selenium Adsorption on Activated Carbon by Using Radiotracer Technique BT—Causes, Impacts and Solutions to Global Warming. In: Dincer I, Colpan CO, Kadioglu F (eds) Springer. New York, NY, New York, pp 305–322

    Google Scholar 

  28. Guediri A, Bouguettoucha A, Chebli D et al (2020) Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127290

    Article  Google Scholar 

  29. Maslova M, Mudruk N, Ivanets A et al (2020) A novel sorbent based on Ti-Ca-Mg phosphates: synthesis, characterization, and sorption properties. Environ Sci Pollut Res 27:3933–3949. https://doi.org/10.1007/s11356-019-06949-3

    Article  CAS  Google Scholar 

  30. Ivanets AI, Kitikova NV, Shashkova IL et al (2019) Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution. J Water Process Eng 32:100963. https://doi.org/10.1016/j.jwpe.2019.100963

    Article  Google Scholar 

  31. Ivanets AI, Milyutin VV, Prozorovich VG et al (2019) Sorption of 90Sr onto manganese oxides prepared in aqueous-ethanol media. Radiochemistry 61:707–713. https://doi.org/10.1134/S1066362219060110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for a research grant provided by National Natural Science Foundation of China (No. 41372233). We are grateful to the students who assisted us with this project and the anonymous reviewers of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixia Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Wang, J. Preparation and adsorption efficiency of sodium dodecyl sulfate modified palygorskite towards Sr(II) ions. J Radioanal Nucl Chem 325, 93–99 (2020). https://doi.org/10.1007/s10967-020-07197-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07197-3

Keywords

Navigation