Skip to main content
Log in

Synthesis and radiolabeling of vitamin C-stabilized selenium nanoparticles as a promising approach in diagnosis of solid tumors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to develop a simple method for synthesis of vitamin c-coated selenium nanoparticles which were then labeled with technetium-99m for further in vivo studies on normal and solid tumor induced mice. Results showed the formation of amorphous SeNPs with a mean size of (23 ± 5 nm). The radiolabelling yield of [99mTc-Vit_C (SeNPs)] was (96 ± 2%) with stability up to 6 h. Effective target non-target ratios were obtained in solid tumor-induced mice throughout the experimental time points. [99mTc-Vit_C (SeNPs)] complex showed promising features which make it a potential radiopharmaceutical for imaging of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Sakr TM, Korany M, Katti KV (2018) Selenium nanomaterials in biomedicine—an overview of new opportunities in nanomedicine of selenium. J Drug Deliv Sci Technol 46:223–233

    CAS  Google Scholar 

  2. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    CAS  PubMed  Google Scholar 

  3. McConnell WP et al (2000) Electronic and optical properties of chemically modified metal nanoparticles and molecularly bridged nanoparticle arrays. J Phys Chem B 104(38):8925–8930

    CAS  Google Scholar 

  4. Swidan MM et al (2019) Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis. Daru 27(1):49–58

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakr TM et al (2018) I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci 122:239–245

    CAS  PubMed  Google Scholar 

  6. Psimadas D et al (2013) Radiolabeling approaches of nanoparticles with 99mTc. Contrast Media Mol Imaging 8(4):333–339

    CAS  PubMed  Google Scholar 

  7. Thurman JM, Serkova NJ (2013) Nanosized contrast agents to noninvasively detect kidney inflammation by magnetic resonance imaging. Adv Chronic Kidney Dis 20(6):488–499

    PubMed  Google Scholar 

  8. Sonkusre P, Cameotra SS (2017) Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnology 15(1):43

    PubMed  PubMed Central  Google Scholar 

  9. Abdulah R et al (2005) Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol 19(2):141–150

    CAS  PubMed  Google Scholar 

  10. Zhai X et al (2017) Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnol 15(1):4

    Google Scholar 

  11. Bai K et al (2017) Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in d-galactose-induced aging mice. J Nanobiotechnol 15(1):92

    Google Scholar 

  12. Wang HG et al (2007) Modelling of batch fluidised bed drying of pharmaceutical granules. Chem Eng Sci 62(5):1524–1535

    CAS  Google Scholar 

  13. Pi J et al (2013) Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol 97(3):1051–1062

    CAS  PubMed  Google Scholar 

  14. Xia Y et al (2015) Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale Res Lett 10(1):1051

    PubMed  Google Scholar 

  15. Nie T et al (2016) Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J Mater Chem B 4(13):2351–2358

    CAS  PubMed  Google Scholar 

  16. Tan L et al (2009) In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron 24(7):2268–2272

    CAS  PubMed  Google Scholar 

  17. Li Y et al (2018) Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R Soc Open Sci 5(11):180509

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y et al (2016) Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. Int J Nanomed 11:3065–3076

    CAS  Google Scholar 

  19. Xia Y et al (2019) Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 26(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malhotra S et al (2016) In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J Biomed Mater Res B Appl Biomater 104(5):993–1003

    CAS  PubMed  Google Scholar 

  21. Yazdi MH et al (2012) The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: an in vivo study. Biol Trace Elem Res 149(1):22–28

    CAS  PubMed  Google Scholar 

  22. Menon S et al (2018) Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B Biointerfaces 170:280–292

    CAS  PubMed  Google Scholar 

  23. Bijur GN et al (1997) Antimutagenic and promutagenic activity of ascorbic acid during oxidative stress. Environ Mol Mutagen 30(3):339–345

    CAS  PubMed  Google Scholar 

  24. Padh H (1991) Vitamin C: newer insights into its biochemical functions. Nutr Rev 49(3):65–70

    CAS  PubMed  Google Scholar 

  25. Fairfield KM, Fletcher RH (2002) Vitamins for chronic disease prevention in adults: scientific review. JAMA 287(23):3116–3126

    CAS  PubMed  Google Scholar 

  26. Levine M (1986) New concepts in the biology and biochemistry of ascorbic acid. N Engl J Med 314(14):892–902

    CAS  PubMed  Google Scholar 

  27. Levine M et al (1356S) Determination of optimal vitamin C requirements in humans. The American journal of clinical nutrition 62(6 Suppl):1347S–1356S

    CAS  PubMed  Google Scholar 

  28. Jacob RA, Sotoudeh G (2002) Vitamin C function and status in chronic disease. Nutr Clin Care 5(2):66–74

    PubMed  Google Scholar 

  29. Yigit US et al (2006) Preparation of (99m)Tc labeled vitamin C (ascorbic acid) and biodistribution in rats. Chem Pharm Bull 54(1):1–3

    CAS  PubMed  Google Scholar 

  30. Zhang C et al (2015) Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohyd Polym 134:158–166

    CAS  Google Scholar 

  31. Motaleb MA et al (2016) An easy and effective method for synthesis and radiolabelling of risedronate as a model for bone imaging. J Label Compd Radiopharm 59(4):157–163

    CAS  Google Scholar 

  32. Vilchis-Juárez A et al (2014) Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol 10(3):393–404

    PubMed  Google Scholar 

  33. Lettré R et al (1972) Sublines of the Ehrlich-Lettré mouse ascites tumour: a new tool for experimental cell research. Die Naturwissenschaften 59(2):59–63

    PubMed  Google Scholar 

  34. Ibrahim A et al (2014) Formulation and preclinical evaluation of 99mTc–gemcitabine as a novel radiopharmaceutical for solid tumor imaging. J Radioanal Nucl Chem 302:179–186

    CAS  Google Scholar 

  35. Yigit US et al (2006) Preparation of (99m)Tc labeled vitamin C (ascorbic acid) and biodistribution in rats. Chem Pharm Bull (Tokyo) 54(1):1–3

    CAS  Google Scholar 

  36. Baba K et al (1999) Tc-glutathione complex (Tc-GSH): labelling, chemical characterization and biodistribution in rats. Met Based Drugs 6(6):329–336

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wongso H, Zainuddin N, Iswahyudi I (2014) Biodistribution and imaging of the 99mTc-glutathione radiopharmaceutical in white rats induced with cancer. Atom Indones 39:106

    Google Scholar 

  38. Decuzzi P et al (2017) Nano-particles for biomedical applications. Springer, Berlin, pp 643–691

    Google Scholar 

  39. Yang J, Yang K-Q, Qiu L (2017) Biosynthesis of vitamin C stabilized tin oxide nanoparticles and their effect on body weight loss in neonatal rats. Environ Toxicol Pharmacol 54:48–52

    CAS  PubMed  Google Scholar 

  40. Malassis L et al (2016) One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Advances 6(39):33092–33100

    CAS  Google Scholar 

  41. Piacenza E et al (2018) Physical-chemical properties of biogenic selenium nanostructures produced by Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1. Front Microbiol 9:3178

    PubMed  PubMed Central  Google Scholar 

  42. Almeida JP et al (2011) In vivo biodistribution of nanoparticles. Nanomedicine (Lond) 6(5):815–835

    CAS  Google Scholar 

  43. Nune SK et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thyagarajan A, Sahu RP (2018) Potential contributions of antioxidants to cancer therapy: immunomodulation and radiosensitization. Integr Cancer Ther 17(2):210–216

    CAS  PubMed  Google Scholar 

  45. Sznarkowska A et al (2017) Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 8(9):15996–16016

    PubMed  Google Scholar 

  46. Wu X, Cheng J, Wang X (2017) Dietary Antioxidants: Potential Anticancer Agents. Nutr Cancer 69(4):521–533

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Korany or Tamer M. Sakr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korany, M., Mahmoud, B., Ayoub, S.M. et al. Synthesis and radiolabeling of vitamin C-stabilized selenium nanoparticles as a promising approach in diagnosis of solid tumors. J Radioanal Nucl Chem 325, 237–244 (2020). https://doi.org/10.1007/s10967-020-07195-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07195-5

Keywords

Navigation