Skip to main content
Log in

The mechanisms and significance of the positional control of centromeres and telomeres in plants

  • JPR Symposium
  • New Aspects of Functional Plant Nuclear Architecture
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The centromere and telomere are universal heterochromatic domains; however, the proper positioning of those domains in nuclear space during the mitotic interphase differs among eukaryotes. Consequently, the question arises how and why this difference occurs. Studies over the past 2 decades have identified several nuclear membrane proteins, nucleolar proteins, and the structural maintenance of a chromosome complex as factors involved in the positional control of centromeres and/or telomeres during the mitotic interphase in yeasts, animals, and plants. In this review, with a primary focus on plants, the roles of those factors are summarized, and the biological significance of proper centromere and telomere positionings during the mitotic interphase is discussed in an effort to provide guidance for this question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Ananiev EV, Riera-Lizarazu O, Rines HW, Phillips RL (1997) Oat-maize chromosome addition lines: a new system for mapping the maize genome. Proc Nat Acad Sci USA 94:3524–3529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrales RR, Forn M, Georgescu PR, Sarkadi Z, Braun S (2016) Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes Dev 30:133–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CR, Hartl TA, Bosco G (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLos Genet 8:12

    Google Scholar 

  • Bi XL, Cheng YJ, Hu B, Ma XL, Wu R, Wang JW, Liu C (2017) Nonrandom domain organization of the Arabidopsis genome at the nuclear periphery. Genome Res 27:1162–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Yamane M, Okamasa K, Tsutsumi C, Kojidani T, Sato M, Haraguchi T, Hiraoka Y (2009) Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. J Cell Biol 187:413–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikashige Y, Haraguchi T, Hiraoka Y (2010) Nuclear envelope attachment is not necessary for telomere function in fission yeast. Nucleus 1:481–486

    PubMed  PubMed Central  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19:2793–2803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    CAS  PubMed  Google Scholar 

  • Ebrahimi H, Cooper JP (2016) Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr Opin Cell Biol 40:145–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi H, Masuda H, Jain D, Cooper JP (2018) Distinct ‘safe zones’ at the nuclear envelope ensure robust replication of heterochromatic chromosome regions. eLIFE 7:e3291

    Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Álvarez A, Cooper JP (2017) The functionally elusive Rabl chromosome configuration directly regulates nuclear membrane remodeling at mitotic onset. Cell Cycle 16:1392–1396

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Álvarez A, Bez C, O’Toole ET, Morphew M, Cooper JP (2016) Mitotic nuclear envelope breakdown and spindle nucleation are controlled by interphase contacts between centromeres and the nuclear envelope. Dev Cell 39:544–559

    PubMed  PubMed Central  Google Scholar 

  • Fransz P, de Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Nat Acad Sci USA 99:14584–14589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto S, Ito M, Matsunaga S, Fukui K (2005) An upper limit of the ratio of DNA volume to nuclear volume exists in plants. Genes Genet Syst 80:345–350

    CAS  PubMed  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121:961–976

    CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274:546–567

    CAS  PubMed  Google Scholar 

  • Graumann K (2014) Evidence for LINC1-SUN Associations at the plant nuclear periphery. PLos One 9:7

    Google Scholar 

  • Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693

    CAS  PubMed  Google Scholar 

  • Hou HT, Zhou Z, Wang Y, Wang JY, Kallgren SP, Kurchuk T, Miller EA, Chang F, Jia ST (2012) Csi1 links centromeres to the nuclear envelope for centromere clustering. J Cell Biol 199:735–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Wang N, Bi XL, Karaaslan ES, Weber AL, Zhu WS, Berendzen KW, Liu C (2019) Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol 20:18

    Google Scholar 

  • Jin QW, Trelles-Sticken E, Scherthan H, Loidl J (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141:22–29

    Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom 8:427

    Google Scholar 

  • Manuelidis L (1984) Different central nervous system cell types display distinct and nonrandom arrangements of satellite DNA sequences. Proc Nat Acad Sci USA 81:3123–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T (2013) New insights into the dynamics of plant cell nuclei and chromosomes. In: Jeon KW (ed) International review of cell and molecular biology. Elsevier Academic Press Inc, San Diego, pp 253–301

    Google Scholar 

  • Miki F, Kurabayashi A, Tange Y, Okazaki K, Shimanuki Y, Niwa O (2004) Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol Genet Genom 270:449–461

    CAS  Google Scholar 

  • Muller H, Gil J, Drinnenberg IA (2019) The impact of centromeres on spatial genome architecture. Trends Genet 35:565–578

    CAS  PubMed  Google Scholar 

  • Municio C, Antosz W, Grasser KD, Kornobis E, Van Bel M, Eguinoa I, Coppens F, Bräutigam A, Lermontova I, Bruckmann A, Houben A, Schubert V (2019) The Arabidopsis condensin CAP-D subunits arrange interphase chromatin. bioRxiv. https://doi.org/10.1101/2019.12.12.873885

    Article  Google Scholar 

  • Murphy SP, Gumber HK, Mao Y, Bass HW (2014) A dynamic meiotic SUN belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.). Front Plant Sci 5:314

    PubMed  PubMed Central  Google Scholar 

  • Nguyen HQ, Bosco G (2015) Gene positioning effects on expression in eukaryotes. In: Bassler BL (ed) Annual review of genetics. Annual Reviews, Palo Alto, pp 627–646

    Google Scholar 

  • Padeken J, Mendiburo MJ, Chlamydas S, Schwarz HJ, Kremmer E, Heun P (2013) The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell 50:236–249

    CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    CAS  PubMed  Google Scholar 

  • Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová S, Parrinello H, Rohmer M, Pikaard CS, Fojtová M et al (2016) Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep 16:1574–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulet A, Duc C, Voisin M, Desset S, Tutois S, Vanrobays E, Benoit M, Evans DE, Probst AV, Tatout C (2017a) The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. J Cell Sci 130:590–601

    CAS  PubMed  Google Scholar 

  • Poulet A, Probst AV, Graumann K, Tatout C, Evans DE (2017b) Exploring the evolution of the proteins of the plant nuclear envelope. Nucleus 8:46–59

    CAS  PubMed  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morphol Jahrb 10:214–330

    Google Scholar 

  • Rawlins DJ, Shaw PJ (1990) Three-dimensional organization of ribosomalDNA in interphase nuclei of Pisum sativum by in situ hybridization and optical tomography. Chromosoma 99:143–151

    CAS  Google Scholar 

  • Roberts NY, Osman K, Armstrong SJ (2009) Telomere distribution and dynamics in somatic and meiotic nuclei of Arabidopsis thaliana. Cytogenet Genome Res 124:193–201

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T (2011) Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. Plant Cell 23:3533–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Sugiyama T, Yamashita T, Matsunaga S (2019) Plant condensin II is required for the correct spatial relationship between centromeres and rDNA arrays. Nucleus 10:116–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AP, Shaw P (2004) Interphase chromosomes and the Rabl configuration: does genome size matter? J Microsc 241:201–206

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM (2009) Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23:928–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281

    CAS  PubMed  Google Scholar 

  • Schubert V, Lermontova I, Schubert I (2013) The Arabidopsis CAP-D proteins are required for correct chromatin organisation, growth and fertility. Chromosoma 122:517–533

    CAS  PubMed  Google Scholar 

  • Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23:1301–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tjong H, Li WY, Kalhor R, Dai C, Hao SL, Gong K, Zhou YG, Li HC, Zhou XJ, Le Gros MA et al (2016) Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc Nat Acad Sci USA 113:E1663–E1672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanrobay E, Thomas M, Tatout C (2013) Heterochromatin positioning and nuclear architecture (In: Evans DE, Graumann K, Bryant JA (eds) Plant nuclear structure, genome architecture and gene regulation. Wiley-Backwell). Annu Plant Rev 46:157–190

    Google Scholar 

  • Verdaasdonk JS, Vasquez PA, Barry RM, Barry T, Goodwin S, Forest MG, Bloom K (2013) Centromere tethering confines chromosome domains. Mol Cell 52:819–831

    CAS  PubMed  Google Scholar 

  • Wang HY, Dittmer TA, Richards EJ (2013) Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol 13:13

    CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    CAS  PubMed  Google Scholar 

  • Zhou X, Meier I (2014) Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proc Nat Acad Sci USA 111:11900–11905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis-Genome-Initiative (2000) Analysis of the genome sequence of the floweringplant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Google Scholar 

  • International-Rice-Genome-Sequencing-Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • International-Barley-Genome-Sequencing-Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

Download references

Acknowledgements

This work was supported by MXT/JSPS KAKENHI (19K06748) to TS. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Sakamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oko, Y., Ito, N. & Sakamoto, T. The mechanisms and significance of the positional control of centromeres and telomeres in plants. J Plant Res 133, 471–478 (2020). https://doi.org/10.1007/s10265-020-01202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-020-01202-2

Keywords

Navigation