Skip to main content
Log in

Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

A considerable body of evidence has demonstrated the positive impact of the diversity of plant species on biological control of pests at the field scale. However, very few studies have assessed the effect of crop diversity on natural enemy performance and pest control. In order to test our hypothesis that crop diversity could increase natural enemy development and performance, we examined the mechanisms underlying the effect of two types of crop succession, i.e., multiple-crop succession (tomato, squash and soybean) and mono-crop succession (each crop alone), on population dynamics, predation capacity and spillover of Nesidiocoris tenuis Reuter (Hemiptera: Miridae) in a greenhouse experiment. We found that (1) the polyculture supported lower population growth of N. tenuis and lower predation rates of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs compared to tomato and squash monocultures, but that correspondingly (2) the predator performed better on the polyculture than on the soybean monoculture. These results revealed that crop identity within the succession is a major factor in determining population dynamics and biological control. We found that compared to soybean monoculture, the presence of soybean Glycine max L. (Fabales: Fabaceae) in the polyculture treatment reduced the population dynamics of the mirid predator but increased biological control. This result suggests that non-host crops in a polycultural succession could benefit from the natural enemy populations that were increased by other suitable crops in the succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnó J, Castane C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115

    PubMed  Google Scholar 

  • Balzan MV (2017) Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod Plant Interact 11:743–754

    Google Scholar 

  • Bianchi F, Booij C, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscapes composition, biodiversity and natural pest control. Proc Biol Sci 273:1715–1727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biondi A, Zappalà L, Di Mauro A, Garzia GT, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61(1):79–90

    Google Scholar 

  • Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annu Rev Entomol 63:239–258

    CAS  PubMed  Google Scholar 

  • Bompard A, Jaworski CC, Bearez P, Desneux N (2013) Sharing a predator: can an invasive alien pest affect the predation on a local pest? Popul Ecol 55:433–440

    Google Scholar 

  • Brewer M, Goodell P (2012) Approaches and incentives to implement integrated pest management that addresses regional and environmental issues. Annu Rev Entomol 57:41–59

    CAS  PubMed  Google Scholar 

  • Burton R, Kuczera C, Schwarz G (2008) Exploring farmer’s cultural resistance to voluntary agri-environmental schemes. Soc Rur 48:16–37

    Google Scholar 

  • Calvo J, Urbaneja A (2004) Nesidiocoris tenuis un aliado para el control biológico de mosca blanca. Hortic Int 44:20–25

    Google Scholar 

  • Calvo J, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. Biol Control 54:237–246

    Google Scholar 

  • Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59(1):22–29

    Google Scholar 

  • Coll M (1996) Feeding and ovipositing on plants by an omnivorous insect predator. Oecologia 105(2):214–220

    PubMed  Google Scholar 

  • Constant B, Grenier S, Bonnot G (1996) Artificial substrate for egg laying and embryonic development by the predatory bug Macrolophus caliginosus (Heteroptera: Miridae). Biol Control 7:140–147

    Google Scholar 

  • De Puysseleyr V, De Man S, Höfte M, De Clercq P (2013) Plantless rearing of the zoophytophagous bug Nesidiocoris tenuis. Biol Control 58(2):205–213

    Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial athropods. Annu Rev Entomol 52:81–106

    CAS  PubMed  Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S et al (2010) Biological invasion of European tomato crops by Tuta absoluta: Ecology, history of invasion and prospects for biological control. J Pest Sci 83:197–215

    Google Scholar 

  • Desneux N, Kaplan I, Yoo HJS, Wang S, O’Neil RJ (2019) Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol Gen 39:127–136

    Google Scholar 

  • Gardarin A, Plantegenest M, Bischoff A, Valantin-Morison M (2018) Understanding plant–arthropod interactions in multitrophic communities to improve conservation biological control: useful traits and metrics. J Pest Sci 91(3):943–955

    Google Scholar 

  • Gurr GM, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109

    CAS  PubMed  Google Scholar 

  • Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N (2014) Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep 4:4455

    PubMed  PubMed Central  Google Scholar 

  • Han P, Dong Y, Lavoir AV, Adamowicz S, Bearez P et al (2015a) Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod. Ecol Evol 5:5468–5477

    PubMed  PubMed Central  Google Scholar 

  • Han P, Bearez P, Adamowicz S, Lavoir AV, Amiens-Desneux E, Desneux N (2015b) Nitrogen and water limitation in tomato plants triggers negative bottom-up effects on the omnivorous predator Macrolophus pygmaeus. J Pest Sci 88:685–691

    Google Scholar 

  • Han P, Wang ZJ, Lavoir AV, Michel T, Seassau A et al (2016) Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Sci Rep 6:32403. https://doi.org/10.1038/srep32403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han P, Becker C, Le Bot J, Larbat R, Lavoir AV, Desneux N (2020) Plant nutrient supply alters the magnitude of indirect interactions between insect herbivores: from foliar chemistry to community dynamics. J Ecol. https://doi.org/10.1111/1365-2745.13342

    Article  Google Scholar 

  • Hatt S, Xu QX, Francis F, Osawa N (2019) Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomol Gener 38:275–315

    Google Scholar 

  • Heimpel GE, Mills NJ (2017) Biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Højsgaard S, Halekoh U, Yan J (2006) The R Package geepack for generalized estimating equations. J Stat Softw 15(2):1–11

    Google Scholar 

  • Honek A, Jarošík AHV (2000) The role of crop density, seed and aphid presence in diversification of field communities of Carabidae (Coleoptera). Eur J Entomol 97:517–525

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    PubMed  Google Scholar 

  • Inclán DJ, Cerretti P, Marini L (2015) Landscape composition affects parasitoid spillover. Agr Ecosyst Environ 208:48–54

    Google Scholar 

  • Jaworski CC, Bompard A, Genies L, Amiens-Desneux E, Desneux N (2013) Preference and prey switching in a generalist predator attacking local and invasive alien pests. PLoS ONE 8(12):e82231

    PubMed  PubMed Central  Google Scholar 

  • Jaworski CC, Chailleux A, Bearez P, Desneux N (2015) Predator-mediated apparent competition between pests fails to prevent yield loss despite actual pest populations decrease. J Pest Sci 88:793–803

    Google Scholar 

  • Jiao ZB, Jaworski CC, Lu YH, Ye LF, Wu KM et al (2019) Maize fields are a potential sink for an outbreaking mirid bug pest in Chinese Bt-cotton agricultural landscapes. Agr Ecosyst Environ 279:122–129

    Google Scholar 

  • Jonsson M, Bommarco R, Ekbom B, Smith HG, Bengtsson J, Caballero-Lopez B, Winqvist C, Olsson O (2014) Ecological production functions for biological control services in agricultural landscapes. Methods Ecol Evol 5:243–252

    Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator–prey interactions. Nature 326(6111):388

    Google Scholar 

  • Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C et al (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci 115(33):E7863–E7870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koricheva J, Mulder CP, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125(2):271–282

    PubMed  Google Scholar 

  • Lenth RV (2016) Least-squares means: the r package lsmeans. J Stat Softw 69:1–33

    Google Scholar 

  • Letourneau DK, Armbrecht I, Salguero Rivera B, Lerma JM, Carmona EJ, Daza MC et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21

    PubMed  Google Scholar 

  • Letourneau DK, Ando AW, Jedlicka JA, Narwani A, Barbier E (2015) Simple-but-sound methods for estimating the value of changes in biodiversity for biological pest control in agriculture. Ecol Econ 120:215–225

    Google Scholar 

  • Li W, Wang L, Jaworski CC, Yang F, Liu B et al (2020) The outbreaks of non-target mirid bugs promote arthropod pest suppression in Bt cotton agroecosystems. Plant Biotechnol J 18:322–324

    PubMed  Google Scholar 

  • Lins JC, Van Loon JJA, Bueno VHP, Lucas-Barbosa D, Dicke M, Van Lenteren JC (2014) Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics. Biol Control 59:707–718

    Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biological control services. Nature 487:362–365

    CAS  PubMed  Google Scholar 

  • Lundgren JG, Fergen JK, Riedell WE (2008) The influence of plant anatomy on oviposition and reproductive success of the omnivorous bug Orius insidiosus. Anim Behav 75:1495–1502

    Google Scholar 

  • Lundgren JG, Wyckhuys KAG, Desneux N (2009) Population responses by Orius insidiosus to vegetational diversity. Biocontrol 54:135–142

    Google Scholar 

  • Mansour R, Brévault T, Chailleux A, Cherif A, Grissa-Lebdi K, Haddi K et al (2018) Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol Gener 38:83–112

    Google Scholar 

  • Maselou DA, Perdikis DC, Sabelis MW, Fantinou AA (2015) Plant resources as a factor altering emergent multi-predator effects. PLoS ONE 10(9):e0138764

    PubMed  PubMed Central  Google Scholar 

  • Molla O, Biondi A, Alonso-Valiente M, Urbaneja A (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biol Control 59:175–183

    Google Scholar 

  • Naselli M, Zappala L, Gugliuzzo A, Garzia GT, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2017) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact 11(2):121–131

    Google Scholar 

  • Pan H, Liu B, Lu Y, Desneux N (2014) Life table parameters of three mirid bug (Adelphocoris) species (Hemiptera: Miridae) under contrasted relative humidity regimes. PLoS ONE 9(12):e115878

    PubMed  PubMed Central  Google Scholar 

  • Parolin P, Bresch C, Poncet C, Desneux N (2012) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377

    Google Scholar 

  • Perdikis D, Arvaniti K (2016) Nymphal development on plant vs. leaf with and without prey for two omnivorous predators: Nesidiocoris tenuis (Reuter, 1895) (Hemiptera: Miridae) and Dicyphus errans (Wolff, 1804)(Hemiptera: Miridae). Entomol Gener 35:297–306

    Google Scholar 

  • Perdikis D, Lykouressis D (2000) Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biol Control 17:55–60

    Google Scholar 

  • Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59(1):13–21

    Google Scholar 

  • Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biological control agents of aphids in sweet peppers. J Pest Sci 88(1):65–73

    Google Scholar 

  • Perović DJ, Gámez-Virués S, Landis DA, Wäckers F, Gurr GM, Wratten SD, You MS, Desneux N (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93(1):306–321

    PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spill-over edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    PubMed  Google Scholar 

  • Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C, Woltz M (2016) Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agr Ecosyst Environ 1(221):198–204

    Google Scholar 

  • Sánchez JA, Martinez-Cascales JI, Lacasa A (2003) Abundance and wild host plants of predator mirids (Heteroptera: Miridae) in horticultural crops in the Southeast of Spain. IOBC wprs Bull 26(10):147–152

    Google Scholar 

  • Sánchez JA, Del Pino-Pérez M, Del Mar Davó M, Martinez- Cascales JI, Lacasa A (2006) Zoophytophagy of the plant bug Nesidiocoris tenuis in tomato crops in southeast Spain. Integr Control Prot Crops Mediterr Clim 29:243–248

    Google Scholar 

  • Schellhorn NA, Gagic V, Bommarco R (2015) Time will tell: Resource continuity bolsters ecosystem services. Trends Ecol Evol 30:524–530

    PubMed  Google Scholar 

  • Seibold S, Gossner MM, Simons NK, Bluthgen N, Muller J et al (2019) Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574:671–674

    CAS  PubMed  Google Scholar 

  • Siscaro G, Pumo CL, Garzia GT, Tortorici S, Gugliuzzo A, Ricupero M, Biondi A, Zappalà L (2019) Temperature and tomato variety influence the development and the plant damage induced by the zoophytophagous mirid bug Nesidiocoris tenuis. J Pest Sci 92(3):1049–1056

    Google Scholar 

  • Taiwo AM (2019) A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 220:1126–1140

    CAS  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8(8):857–874

    Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agr Ecosyst Environ 166:3–14

    Google Scholar 

  • Winqvist C, Bengtsson J, Aavik T, Berendse F, Clement LW, Eggers S, Fischer C, Flohre A, Geiger F, Liira J, Pärt T, Thies C, Tscharntke T, Weisser WW, Bommarco R (2011) Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J Appl Ecol 48:570–579

    Google Scholar 

  • Wood TJ, Goulson D (2017) The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ Sci Pollut Res 24(21):17285–17325

    CAS  Google Scholar 

  • Zhao J, Guo X, Tan X, Desneux N, Zappala L, Zhang F, Wang S (2017) Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73(3):515–520

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Edwige Amiens and Christiane Metay for technical support. All the authors were supported by the project EUCLID (H2020-SFS-2014, Grant No. 633999).

Funding

This study was funded by the Europe under H2020 program Societal Challenges (H2020-SFS-2014, Grant No. 633999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Desneux.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. Traugott.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomine, E., Jeavons, E., Rusch, A. et al. Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis. J Pest Sci 93, 1255–1265 (2020). https://doi.org/10.1007/s10340-020-01222-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01222-w

Keywords

Navigation