Skip to main content
Log in

Stirling posets

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We define combinatorially a partial order on the set partitions and show that it is equivalent to the Bruhat-Chevalley-Renner order on the upper triangular matrices. By considering subposets consisting of set partitions with a fixed number of blocks, we introduce and investigate “Stirling posets.” As we show, the Stirling posets have a hierarchy and they glue together to give the whole set partition poset. Moreover, we show that they (Stirling posets) are graded and EL-shellable. We offer various reformulations of their length functions and determine the recurrences for their length generating series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aker, M. B. Can and M. Taşkin, R-polynomials of finite monoids of Lie type, International Journal of Algebra and Computation 20 (2010), 793–805.

    Article  MathSciNet  Google Scholar 

  2. A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Transactions of the American Mathematical Society 260 (1980), 159–183.

    Article  MathSciNet  Google Scholar 

  3. A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Advances in Mathematics 43 (1982), 87–100.

    Article  MathSciNet  Google Scholar 

  4. M. B. Can, The rook monoid is lexicographically shellable, European Journal of Combinatorics 81 (2019), 265–275.

    Article  MathSciNet  Google Scholar 

  5. M. B. Can and L. E. Renner, H-polynomials and rook polynomials, International Journal of Algebra and Computation 18 (2008), 935–949.

    Article  MathSciNet  Google Scholar 

  6. M. B. Can and L. E. Renner, Bruhat-Chevalley order on the rook monoid, Turkish Journal of Mathematics 36 (2012), 499–519.

    MathSciNet  MATH  Google Scholar 

  7. M. B. Can and T. Twelbeck, Lexicographic shellability of partial involutions, Discrete Mathematics 335 (2014), 66–80.

    Article  MathSciNet  Google Scholar 

  8. M. B. Can, Y. Cherniavsky and T. Twelbeck, Bruhat order on partial fixed point free involutions, Electronic Journal of Combinatorics 21 (2014), Article number P4.34.

  9. M. B. Can, Y. Cherniavsky and T. Twelbeck, Lexicographic shellability of the Bruhat- Chevalley order on fixed point free involutions, Israel Journal of Mathematics 207 (2015), 281–299.

    Article  MathSciNet  Google Scholar 

  10. M. B. Can, Y. Cherniavsky and M. Rubey, A geometric interpretation of the intertwining number, Electronic Journal of Combinatorics 26 (2019), Article Number P2.7

  11. M. Develin, J. L. Martin and V. Reiner, Classification of Ding's Schubert varieties: finer rook equivalence, Canadian Journal of Mathematics 59 (2007), 36–62.

    Article  MathSciNet  Google Scholar 

  12. K. Ding, Rook placements and cellular decomposition of partition varieties, Discrete Mathematics 170 (1997), 107–151.

    Article  MathSciNet  Google Scholar 

  13. A. M. Garsia, On the ”maj” and ”inv” q-analogues of Eulerian polynomials, Linear and Multilinear Algebra 8 (1979/80), 21–34.

    Article  MathSciNet  Google Scholar 

  14. A. M. Garsia and J. B. Remmel, Q-counting rook configurations and a formula of Frobe-nius, Journal of Combinatorial Theory. Series A 41 (1986), 246–275.

    Article  MathSciNet  Google Scholar 

  15. B. C Jones, An explicit derivation of the Möbius function for Bruhat order, Order 26 (2009), 319–330.

    Article  MathSciNet  Google Scholar 

  16. S. C. Milne, Restricted growth functions, rank row matchings of partition lattices, and q-Stirling numbers, Advances in Mathematics 43 (1982), 173–196.

    Article  MathSciNet  Google Scholar 

  17. E. A. Pennell, M. S. Putcha and L. E. Renner, Analogue of the Bruhat-Chevalley order for reductive monoids, Journal of Algebra 196 (1997), 339–368.

    Article  MathSciNet  Google Scholar 

  18. P. Pudlak and J. Tuma, Every finite lattice can be embedded in a finite partition lattice, Algebra Universalis 10 (1980), 74–95.

    Article  MathSciNet  Google Scholar 

  19. M. S. Putcha, Parabolic monoids. I. Structure, International Journal of Algebra and Computation 16 (2006), 1109–1129.

    Article  MathSciNet  Google Scholar 

  20. L. E. Renner, Analogue of the Bruhat decomposition for algebraic monoids, Journal of Algebra 101 (1986), 303–338.

    Article  MathSciNet  Google Scholar 

  21. L. E. Renner, Linear Algebraic Monoids, Encyclopaedia of Mathematical Sciences, Vol. 134, Springer, Berlin, 2005.

  22. J. R. Stembridge, A short derivation of the Möbius function for the Bruhat order, Journal of Algebraic Combinatorics 25 (2007), 141–148.

    Article  MathSciNet  Google Scholar 

  23. W. Thawinrak, The Möbius function of the rook monoid, Undergraduate Honors Thesis at the University of Minnesota-Twin Cities, 2019.

    Google Scholar 

  24. D. Verma, M öbius inversion for the Bruhat ordering on a Weyl group, Annales Scientifiques de l'École Normale Supérieure 4 (1971), 393–398.

    Article  MathSciNet  Google Scholar 

  25. M. Wachs, A basis for the homology of the d-divisible partition lattice, Advances in Mathematics 117 (1996), 294–318.

    Article  MathSciNet  Google Scholar 

  26. M. Wachs, Poset topology: tools and applications, in Geometric Combinatorics, IAS/Park City Mathematics Series, Vol. 13, American Mathematical Society, Providence, RI, 2007, pp. 497–615.

    Article  Google Scholar 

  27. M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, Journal of Combinatorial Theory. Series A 56 (1991), 27–46.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahir Bilen Can.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, M.B., Cherniavsky, Y. Stirling posets. Isr. J. Math. 237, 185–219 (2020). https://doi.org/10.1007/s11856-020-2004-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2004-1

Navigation