Skip to main content
Log in

Hierarchically porous carbon from foamed Mg chelate for supercapacitor and capacitive deionization

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pore hierarchy facilitates the mass transportation/exchange between the interior surface and bulk solution, which is critical for the enhancement of capacitive performance. Herein, by applying in situ foamed Mg chelates as precursors, we managed the scalable fabrication of hierarchically porous carbon (HPC) materials and explored their capacitive applications. Particularly, citric acid first reacted with magnesium nitrate to form Mg chelate while the generated gaseous HNO3 molecules bubbled the intermediate carbon framework to produce abundant open pores. The as-made precursors were then submitted to potassium hydroxide activation for a high carbonization degree and rich meso-/micropores. The optimized sample (HPC-2) exhibited very high specific capacitance of 213.5 F g−1 in neutral NaCl solution and a high rate capability of ~ 67.5% at 10.0 A g−1. Furthermore, it showed impressive capacitive deionization performance regarding high removal efficiency (67.1%), large capacity of 1810.1 mg g−1 (in 2200 mg L−1 NaCl solution), and robust cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harfoot MBJ, Tittensor DP, Knight S, Arnell AP, Blyth S, Brooks S, Butchart SHM, Hutton J, Jones MI, Kapos V, Scharlemann JPW, Burgess ND (2018) Present and future biodiversity risks from fossil fuel exploitation. Conserv Lett 11:e12448

    Google Scholar 

  2. Cao J, Wang Y, Chen C, Yu F, Ma J (2018) A comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. J Colloid Interface Sci 518:69–75

    CAS  PubMed  Google Scholar 

  3. Chen Y-W, Chen J-F, Lin C-H, Hou C-H (2019) Integrating a supercapacitor with capacitive deionization for direct energy recovery from the desalination of brackish water. Appl Energy 252:113417

    CAS  Google Scholar 

  4. Ma J, Wang L, Yu F (2018) Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochim Acta 263:40–46

    CAS  Google Scholar 

  5. Yasin AS, Mohamed IMA, Amen MT, Barakat NAM, Park CH, Kim CS (2019) Incorporating zirconia nanoparticles into activated carbon as electrode material for capacitive deionization. J Alloys Compd 772:1079–1087

    CAS  Google Scholar 

  6. Khan ZU, Yan T, Han J, Shi L, Zhang D (2019) Capacitive deionization of saline water using graphene nanosphere decorated N-doped layered mesoporous carbon frameworks. Environ Sci Nano 6:3442–3453

    CAS  Google Scholar 

  7. Yan T, Shen J, Shi L, Zhang J, Zhang D (2019) Capacitive deionization of saline water by using MoS2 - graphene hybrid electrodes with high volumetric adsorption capacity. Environ Sci Technol 53:12668–12676

    PubMed  Google Scholar 

  8. Zhang J, Fang J, Han J, Yan T, Shi L, Zhang D (2018) N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization. J Mater Chem A 6:15245–15252

    CAS  Google Scholar 

  9. Yan T, Liu J, Lei H, Shi L, An Z, Park HS, Zhang D (2018) Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy. Environ Sci Nano 5:2722–2730

    CAS  Google Scholar 

  10. Chen L, Chen Z, Kuang Y, Xu C, Yang L, Zhou M, He B, Jing M, Li Z, Li F, Chen Z, Hou Z (2018) Edge-rich quasi-mesoporous nitrogen-doped carbon framework derived from palm tree bark hair for electrochemical applications. ACS Appl Mater Interfaces 10:27047–27055

    CAS  PubMed  Google Scholar 

  11. He H, Ma L, Fu S, Gan M, Hu L, Zhang H, Xie F, Jiang M (2019) Fabrication of 3D ordered honeycomb-like nitrogen-doped carbon/PANI composite for high-performance supercapacitors. Appl Surf Sci 484:1288–1296

    CAS  Google Scholar 

  12. Li Y, Qi J, Li J, Shen J, Liu Y, Sun X, Shen J, Han W, Wang L (2017) Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization. ACS Sustain Chem Eng 5:6635–6644

    CAS  Google Scholar 

  13. Tiruneh SN, Kang BK, Choi HW, Kwon SB, Kim MS, Yoon DH (2018) Millerite core-nitrogen-doped carbon hollow shell structure for electrochemical energy storage. Small 14:e1802933

    PubMed  Google Scholar 

  14. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    CAS  PubMed  Google Scholar 

  15. Liu X, Ma C, Li J, Zielinska B, Kalenczuk RJ, Chen X, Chu PK, Tang T, Mijowska E (2019) Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J Power Sources 412:1–9

    CAS  Google Scholar 

  16. Hu X, Wang Y, Ding B, Wu X (2019) A novel way to synthesize nitrogen doped porous carbon materials with high rate performance and energy density for supercapacitors. J Alloys Compd 785:110–116

    CAS  Google Scholar 

  17. Yoo Y, Park GD, Kang YC (2019) Carbon microspheres with micro- and mesopores synthesized via spray pyrolysis for high-energy-density, electrical-double-layer capacitors. Chem Eng J 365:193–200

    CAS  Google Scholar 

  18. Zhou J, Wang M, Li X (2018) Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Appl Surf Sci 462:444–452

    CAS  Google Scholar 

  19. Gao X, Chen Z, Yao Y, Zhou M, Liu Y, Wang J, Wu WD, Chen XD, Wu Z, Zhao D (2016) Direct heating amino acids with silica: a universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials. Adv Funct Mater 26:6649–6661

    CAS  Google Scholar 

  20. Han F, Qian O, Chen B, Tang H, Wang M (2018) Sugar blowing-assisted reduction and interconnection of graphene oxide into three-dimensional porous graphene. J Alloys Compd 730:386–391

    CAS  Google Scholar 

  21. Jiang X-F, Wang X-B, Dai P, Li X, Weng Q, Wang X, Tang D-M, Tang J, Bando Y, Golberg D (2015) High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy 16:81–90

    CAS  Google Scholar 

  22. Liu X, Liu H, Mi M, Kong W, Ge Y, Hu J (2019) Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization. Sep Purif Technol 224:44–50

    CAS  Google Scholar 

  23. Tsai YC, Doong RA (2016) Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization. Desalination 398:171–179

    CAS  Google Scholar 

  24. Chen L, Sun X, Liu Y, Li Y (2004) Preparation and characterization of porous MgO and NiO/MgO nanocomposites. Appl Catal A 265:123–128

    CAS  Google Scholar 

  25. Gajbhiye NS, Bhattacharya U, Darshane VS (1995) Thermal decomposition of zinc-iron citrate precursor. Thermochim Acta 264:219–230

    CAS  Google Scholar 

  26. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–1541

    CAS  PubMed  Google Scholar 

  27. Chao L, Liu Z, Zhang G, Song X, Lei X, Noyong M, Simon U, Chang Z, Sun X (2015) Enhancement of capacitive deionization capacity of hierarchical porous carbon. J Mater Chem A 3:12730–12737

    CAS  Google Scholar 

  28. Lee J, Kim S, Kim C, Yoon J (2014) Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ Sci 7:3683–3689

    CAS  Google Scholar 

  29. Radanović DD, Rychlewska U, Djuran MI, Warżajtis B, Drašković NS, Gurešić DM (2004) Alkaline earth metal complexes of the edta-type with a six-membered diamine chelate ring: crystal structures of [Mg(H 2 O) 6 ][Mg(1,3-pdta)] · 2H 2 O and [Ca(H 2 O) 3 Ca(1,3-pdta) (H 2 O)] · 2H 2 O: comparative stereochemistry of edta-type complexes. Polyhedron 23:2183–2192

    Google Scholar 

  30. Lei H, Yan T, Wang H, Shi L, Zhang J, Zhang D (2015) Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J Mater Chem A 3:5934–5941

    CAS  Google Scholar 

  31. Jin Z, Wang Y, Chen S, Li G, Wang L, Zhu H, Zhang X, Liu Y (2016) Influence of a solution-deposited rutile layer on the morphology of TiO2 nanorod arrays and the performance of nanorod-based dye-sensitized solar cells. RSC Adv 6:10450–10455

    CAS  Google Scholar 

  32. Luo H, Liu Z, Chao L, Wu X, Lei X, Chang Z, Sun X (2015) Synthesis of hierarchical porous N-doped sandwich-type carbon composites as high-performance supercapacitor electrodes. J Mater Chem A 3:3667–3675

    CAS  Google Scholar 

  33. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26:111–119

    CAS  Google Scholar 

  34. Shi W, Li H, Cao X, Leong ZY, Zhang J, Chen T, Zhang H, Yang HY (2016) Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Sci Rep 6:18966

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wen X, Zhang D, Yan T, Zhang J, Shi L (2013) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J Mater Chem A 1:12334

    CAS  Google Scholar 

  36. Zhang H, Li Y, Zhang G, Xu T, Wan P, Sun X (2015) A metallic CoS2 nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. J Mater Chem A 3:6306–6310

    CAS  Google Scholar 

  37. Zhang G, Wang L, Hao Y, Jin X, Xu Y, Kuang Y, Dai L, Sun X (2016) Unconventional carbon: alkaline dehalogenation of polymers yields N-doped carbon electrode for high-performance capacitive energy storage. Adv Funct Mater 26:3340–3348

    CAS  Google Scholar 

  38. Chen H, Chang X, Chen D, Liu J, Liu P, Xue Y, Lin H, Han S (2016) Graphene-karst cave flower-like Ni–Mn layered double oxides nanoarrays with energy storage electrode. Electrochim Acta 220:36–46

    CAS  Google Scholar 

  39. Niu R, Li H, Ma Y, He L, Li J (2015) An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid. Electrochim Acta 176:755–762

    CAS  Google Scholar 

  40. Sun F, Liu J, Chen H, Zhang Z, Qiao W, Long D, Ling L (2013) Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S. ACS Catal 3:862–870

    CAS  Google Scholar 

  41. Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L (2016) N,P-Codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew Chem Int Ed Engl 55:2230–2234

    CAS  PubMed  Google Scholar 

  42. Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    CAS  PubMed  Google Scholar 

  43. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    CAS  PubMed  Google Scholar 

  44. Fan X, Yu C, Yang J, Ling Z, Hu C, Zhang M, Qiu J (2015) A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater 5:1401761

    Google Scholar 

  45. Zhang G, Wang L, Hao Y, Jin X, Xu Y, Kuang Y, Dai L, Sun X (2015) Unconventional carbon: alkaline dehalogenation of polymers yields N-doped carbon electrode for high-performance capacitive energy storage. Adv Funct Mater 26:3340-3348.

  46. Zhang G, Luo H, Li H, Wang L, Han B, Zhang H, Li Y, Chang Z, Kuang Y, Sun X (2016) ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy 26:241–247

    CAS  Google Scholar 

  47. Zhao R, Soestbergen MV, Rijnaarts HHM, Wal AVD, Bazant MZ, Biesheuvel PM (2012) Time-dependent ion selectivity in capacitive charging of porous electrodes. J Colloid Interface Sci 384:38–44

    CAS  PubMed  Google Scholar 

  48. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 8:2296–2319

    CAS  Google Scholar 

  49. Mi M, Liu X, Kong W, Ge Y, Dang W, Hu J (2019) Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization. Desalination 464:18–24

    CAS  Google Scholar 

  50. Min X, Hu X, Li X, Wang H, Yang W (2019) Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. J Colloid Interface Sci 550:147–158

    CAS  PubMed  Google Scholar 

  51. Wang Z, Yan T, Chen G, Shi L, Zhang D (2017) High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization. ACS Sustain Chem Eng 5:11637–11644

    CAS  Google Scholar 

  52. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816

    Google Scholar 

  53. Belaustegui Y, Zorita S, Fernández-Carretero F, García-Luis A, Pantò F, Stelitano S, Frontera P, Antonucci P, Santangelo S (2018) Electro-spun graphene-enriched carbon fibres with high nitrogen-contents for electrochemical water desalination. Desalination 428:40–49

    CAS  Google Scholar 

  54. Li Y, Liu Y, Shen J, Qi J, Li J, Sun X, Shen J, Han W, Wang L (2018) Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination 430:45–55

    CAS  Google Scholar 

  55. Chen Y, Liu C, Hsu CC, Hu C (2019) An integrated strategy for improving the desalination performances of activated carbon-based capacitive deionization systems. Electrochim Acta 302:277–285

    CAS  Google Scholar 

  56. Yue Z, Gao T, Li H (2019) Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance. Desalination 449:69–77

    CAS  Google Scholar 

  57. Ma D, Wang Y, Cai Y, Xu S, Wang J (2019) Multifunctional group sulfobutyl ether β-cyclodextrin polymer treated CNT as the cathode for enhanced performance in asymmetric capacitive deionization. Electrochim Acta 313:321–330

    CAS  Google Scholar 

  58. Chang L, Hu Y (2019) 3D channel-structured graphene as efficient electrodes for capacitive deionization. J Colloid Interface Sci 538:420–425

    CAS  PubMed  Google Scholar 

  59. Chang L, Hu Y (2018) Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization. J Phys Chem Solids 116:347–352

    CAS  Google Scholar 

  60. Feng C, Chen Y, Yu C, Hou C (2018) Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. Chemosphere 208:285–293

    CAS  PubMed  Google Scholar 

  61. Zhou F, Gao T, Luo M, Li H (2018) Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity. Chem Eng J 343:8–15

    CAS  Google Scholar 

  62. Wang Z, Yan T, Chen G, Shi L, Zhang D (2017) High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization. ACS Sustain Chem Eng 12:11637–11644

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC, 21701101), the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1205), the Fundamental Research Funds for the Central Universities, the Long-Term Subsidy Mechanism from the Ministry of Finance, the Ministry of Education of PRC, and the Shandong Scientific Research Awards Foundation for Outstanding Young Scientists (grant number ZR2018JL010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxin Zhang or Zheng Chang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chang, Y., Han, B. et al. Hierarchically porous carbon from foamed Mg chelate for supercapacitor and capacitive deionization. Ionics 26, 4713–4721 (2020). https://doi.org/10.1007/s11581-020-03584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03584-8

Keywords

Navigation