Skip to main content

Advertisement

Log in

Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 08 April 2021

This article has been updated

Abstract

Silent information regulator 1 (SIRT1) is a ubiquitously expressed protein and has an intricate role in the pathology, progression, and treatment of several diseases. SIRT1 is a NAD+-dependent deacetylase and regulates gene expression by histone deacetylation. Deletion of SIRT1 in the liver, pancreas, and brain significantly increases the reactive oxygen species (ROS) and inflammatory response. Literature survey on SIRT1 shows the evidence for its role in preventing oxidative stress and inflammation. Oxidative stress and inflammation are closely related pathophysiological processes and are involved in the pathogenesis of a number of chronic disorders such as fatty liver diseases, diabetes, and neurodegenerative diseases. Both oxidative stress and inflammation alter the expression of several genes such as nuclear factor E2 related factor (Nrf2), nuclear factor E2 related factor 2 (Nef2), nuclear factor kappa B (NF-kB), pancreatic and duodenal homeobox factor 1 (PDX1), interleukin-1 (IL1), forkhead box class O (FOXO), and tumour necrosis factor alpha (TNF-α). By annotating this knowledge, we can conclude that modulating the expression of SIRT1 might prevent the onset of diseases inexorably linked to the liver, pancreas, and brain.

Role of silent information regulator 1 (SIRT1) in the pancreas, brain, and liver

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Gregoretti, I., Y.M. Lee, and H.V. Goodson. 2004 Apr 16. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. Journal of Molecular Biology 338 (1): 17–31.

    CAS  PubMed  Google Scholar 

  2. Finkel, T., C.X. Deng, and R. Mostoslavsky. 2009 Jul. Recent progress in the biology and physiology of sirtuins. Nature. 460 (7255): 587–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng, G.F., X.R. Xu, Y. Zhang, D. Li, R.Y. Gan, and H.B. Li. 2013 Jan 1. Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition 53 (3): 296–306.

    CAS  PubMed  Google Scholar 

  4. Price, N.L., A.P. Gomes, A.J. Ling, F.V. Duarte, A. Martin-Montalvo, B.J. North, B. Agarwal, L. Ye, G. Ramadori, J.S. Teodoro, and B.P. Hubbard. 2012 May 2. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism 15 (5): 675–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanno, M., J. Sakamoto, T. Miura, K. Shimamoto, and Y. Horio. 2007 Mar 2. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. The Journal of Biological Chemistry 282 (9): 6823–6832.

    CAS  PubMed  Google Scholar 

  6. Kang, H., J.Y. Suh, Y.S. Jung, J.W. Jung, M.K. Kim, and J.H. Chung. 2011 Oct 21. Peptide switch is essential for Sirt1 deacetylase activity. Molecular Cell 44 (2): 203–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davenport, A.M., F.M. Huber, and A. Hoelz. 2014 Feb 6. Structural and functional analysis of human SIRT1. Journal of Molecular Biology 426 (3): 526–541.

    CAS  PubMed  Google Scholar 

  8. Han, C., Y. Gu, H. Shan, W. Mi, J. Sun, M. Shi, X. Zhang, X. Lu, F. Han, Q. Gong, and W. Yu. 2017 Nov 14. O-GlcNAcylation of SIRT1 enhances its deacetylase activity and promotes cytoprotection under stress. Nature Communications 8 (1): 1–2.

    Google Scholar 

  9. Caldwell, S.H., D.H. Oelsner, J.C. Iezzoni, E.E. Hespenheide, E.H. Battle, and C.J. Driscoll. 1999 Mar. Cryptogenic cirrhosis: Clinical characterization and risk factors for underlying disease. Hepatology. 29 (3): 664–669.

    CAS  PubMed  Google Scholar 

  10. Shimada, M., E. Hashimoto, M. Taniai, K. Hasegawa, H. Okuda, N. Hayashi, K. Takasaki, and J. Ludwig. 2002 Jul 1. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology 37 (1): 154–160.

    PubMed  Google Scholar 

  11. Propst, A., T. Propst, G. Judmaier, and W. Vogel. 1995 May 1. Prognosis in nonalcoholic steatohepatitis. Gastroenterology. 108 (5): 1607.

    CAS  PubMed  Google Scholar 

  12. Sheth, S.G., F.D. Gordon, and S. Chopra. 1997 Jan 15. Nonalcoholic steatohepatitis. Annals of Internal Medicine 126 (2): 137–145.

    CAS  PubMed  Google Scholar 

  13. Ludwig J, Viggiano TR, Mcgill DB, Oh BJ. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. In Mayo Clinic Proceedings 1980 Jul (Vol. 55, No. 7, pp. 434–438).

  14. Ding, R.B., K. Tian, C.W. He, Y. Jiang, Y.T. Wang, and J.B. Wan. 2012 Dec 18. Herbal medicines for the prevention of alcoholic liver disease: A review. Journal of Ethnopharmacology 144 (3): 457–465.

    PubMed  Google Scholar 

  15. Feldstein AE, Bailey SM. Emerging role of redox dysregulation in alcoholic and nonalcoholic fatty liver disease.

  16. Liu, W., R.D. Baker, T. Bhatia, L. Zhu, and S.S. Baker. 2016 May 1. Pathogenesis of nonalcoholic steatohepatitis. Cellular and Molecular Life Sciences 73 (10): 1969–1987.

    CAS  PubMed  Google Scholar 

  17. Caligiuri, A., A. Gentilini, and F. Marra. 2016 Sep. Molecular pathogenesis of NASH. International Journal of Molecular Sciences 17 (9): 1575.

    PubMed Central  Google Scholar 

  18. Tak, P.P., and G.S. Firestein. 2001 Jan 1. NF-κB: A key role in inflammatory diseases. The Journal of Clinical Investigation 107 (1): 7–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mulero, M.C., D.B. Huang, H.T. Nguyen, V.Y. Wang, Y. Li, T. Biswas, and G. Ghosh. 2017 Nov 17. DNA-binding affinity and transcriptional activity of the RelA homodimer of nuclear factor κB are not correlated. The Journal of Biological Chemistry 292 (46): 18821–18830.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yeung, F., J.E. Hoberg, C.S. Ramsey, M.D. Keller, D.R. Jones, R.A. Frye, and M.W. Mayo. 2004 Jun 16. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. The EMBO Journal 23 (12): 2369–2380.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, Z., J.M. Ajmo, C.Q. Rogers, X. Liang, L. Le, M.M. Murr, Y. Peng, and M. You. 2009 May. Role of SIRT1 in regulation of LPS-or two ethanol metabolites-induced TNF-α production in cultured macrophage cell lines. American Journal of Physiology. Gastrointestinal and Liver Physiology 296 (5): G1047–G1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, F., Z. Gao, J. Zhang, C.A. Rivera, J. Yin, J. Weng, and J. Ye. 2010 Jun 1. Lack of SIRT1 (mammalian sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: A role of lipid mobilization and inflammation. Endocrinology. 151 (6): 2504–2514.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schug, T.T., Q. Xu, H. Gao, A. Peres-da-Silva, D.W. Draper, M.B. Fessler, A. Purushotham, and X. Li. 2010 Oct 1. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and Cellular Biology 30 (19): 4712–4721.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pfluger, P.T., D. Herranz, S. Velasco-Miguel, M. Serrano, and M.H. Tschöp. 2008 Jul 15. Sirt1 protects against high-fat diet-induced metabolic damage. Proceedings of the National Academy of Sciences 105 (28): 9793–9798.

    CAS  Google Scholar 

  25. Tang, W., Y.F. Jiang, M. Ponnusamy, and M. Diallo. 2014 Sep 28. Role of Nrf2 in chronic liver disease. World journal of gastroenterology: WJG 20 (36): 13079–13087.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kansanen, E., A.M. Kivelä, and A.L. Levonen. 2009 Nov 1. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12, 14-prostaglandin J2. Free Radical Biology & Medicine 47 (9): 1310–1317.

    CAS  Google Scholar 

  27. Zhang, Y.K., K.C. Wu, and C.D. Klaassen. 2013. Genetic activation of Nrf2 protects against fasting-induced oxidative stress in livers of mice. PLoS One 8 (3): e59122.

  28. Yin, H., M. Hu, X. Liang, J.M. Ajmo, X. Li, R. Bataller, G. Odena, S.M. Stevens Jr., and M. You. 2014 Mar 1. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 146 (3): 801–811.

    CAS  PubMed  Google Scholar 

  29. Wang, R.H., C. Li, and C.X. Deng. 2010. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. International Journal of Biological Sciences 6 (7): 682–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wright, E., Jr., J.L. Scism-Bacon, and L.C. Glass. 2006 Mar. Oxidative stress in type 2 diabetes: The role of fasting and postprandial glycaemia. International Journal of Clinical Practice 60 (3): 308–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawamori, D., Y. Kajimoto, H. Kaneto, Y. Umayahara, Y. Fujitani, T. Miyatsuka, H. Watada, I.B. Leibiger, Y. Yamasaki, and M. Hori. 2003 Dec 1. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase. Diabetes. 52 (12): 2896–2904.

    CAS  PubMed  Google Scholar 

  32. Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. 1994 Oct 13. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371 (6498): 606–609.

    CAS  PubMed  Google Scholar 

  33. Sharma, A., D.H. Zangen, P. Reitz, M. Taneja, M.E. Lissauer, C.P. Miller, G.C. Weir, J.F. Habener, and S. Bonner-Weir. 1999 Mar 1. The homeodomain protein IDX-1 increases after an early burst of proliferation during pancreatic regeneration. Diabetes. 48 (3): 507–513.

    CAS  PubMed  Google Scholar 

  34. Ahlgren, U., J. Jonsson, L. Jonsson, K. Simu, and H. Edlund. 1998 Jun 15. β-Cell-specific inactivation of the mouseIpf1/Pdx1 gene results in loss of the β-cell phenotype and maturity onset diabetes. Genes & Development 12 (12): 1763–1768.

    CAS  Google Scholar 

  35. Staffers, D.A., J. Ferrer, W.L. Clarke, and J.F. Habener. 1997 Oct. Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1. Nature Genetics 17 (2): 138–139.

    Google Scholar 

  36. Wang, R.H., X. Xu, H.S. Kim, Z. Xiao, and C.X. Deng. 2013. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. International Journal of Biological Sciences 9 (9): 934–946.

    PubMed  PubMed Central  Google Scholar 

  37. Wu, L., L. Zhou, Y. Lu, J. Zhang, F. Jian, Y. Liu, F. Li, W. Li, X. Wang, and G. Li. 2012 Nov 1. Activation of SIRT1 protects pancreatic β-cells against palmitate-induced dysfunction. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1822 (11): 1815–1825.

    CAS  Google Scholar 

  38. Kaneto, H., G. Xu, N. Fujii, S. Kim, S. Bonner-Weir, and G.C. Weir. 2002 Aug 16. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. The Journal of Biological Chemistry 277 (33): 30010–30018.

    CAS  PubMed  Google Scholar 

  39. Jia, Y., Z. Zheng, Y. Wang, Q. Zhou, W. Cai, W. Jia, L. Yang, M. Dong, X. Zhu, L. Su, and D. Hu. 2015. SIRT1 is a regulator in high glucose-induced inflammatory response in RAW264. 7 cells. PLoS One 10 (3): e0120849.

  40. Elmarakby, A.A., and J.C. Sullivan. 2012 Feb. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics 30 (1): 49–59.

    CAS  PubMed  Google Scholar 

  41. Spranger, J., A. Kroke, M. Möhlig, K. Hoffmann, M.M. Bergmann, M. Ristow, H. Boeing, and A.F. Pfeiffer. 2003 Mar 1. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 52 (3): 812–817.

    CAS  PubMed  Google Scholar 

  42. Herder, C., T. Illig, W. Rathmann, S. Martin, B. Haastert, S. Müller-Scholze, R. Holle, B. Thorand, W. Koenig, H.E. Wichmann, and H. Kolb. 2005 Aug. Inflammation and type 2 diabetes: Results from KORA Augsburg. Das Gesundheitswesen 67 (S 01): 115–121.

    Google Scholar 

  43. Herder, C., E.J. Brunner, W. Rathmann, K. Strassburger, A.G. Tabak, N.C. Schloot, and D.R. Witte. 2009. Elevated levels of the anti- inflammatory interleukin-1 receptor antagonist precede the onset of type 2 diabetes: The Whitehall II study. Diabetes Care 32: 421–423.

    PubMed  PubMed Central  Google Scholar 

  44. Pradhan, A.D., J.E. Manson, N. Rifai, J.E. Buring, and P.M. Ridker. 2001 Jul 18. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 286 (3): 327–334.

    CAS  PubMed  Google Scholar 

  45. Ehses, J.A., A. Perren, E. Eppler, P. Ribaux, J.A. Pospisilik, R. Maor-Cahn, X. Gueripel, H. Ellingsgaard, M.K. Schneider, G. Biollaz, and A. Fontana. 2007 Sep 1. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes. 56 (9): 2356–2370.

    CAS  PubMed  Google Scholar 

  46. Westwell-Roper, C.Y., J.A. Ehses, and C.B. Verchere. 2014 May 1. Resident macrophages mediate islet amyloid polypeptide–induced islet IL-1β production and β-cell dysfunction. Diabetes. 63 (5): 1698–1711.

    CAS  PubMed  Google Scholar 

  47. Yoshizaki, T., J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, and J.M. Olefsky. 2009 Mar 1. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Molecular and Cellular Biology 29 (5): 1363–1374.

    CAS  PubMed  Google Scholar 

  48. Yoshizaki, T., S. Schenk, T. Imamura, J.L. Babendure, N. Sonoda, E.J. Bae, D.Y. Oh, M. Lu, J.C. Milne, C. Westphal, and G. Bandyopadhyay. 2010 Mar. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. American Journal of Physiology. Endocrinology and Metabolism 298 (3): E419–E428.

    CAS  PubMed  Google Scholar 

  49. Pelvig, D.P., H. Pakkenberg, A.K. Stark, and B. Pakkenberg. 2008 Nov 1. Neocortical glial cell numbers in human brains. Neurobiology of Aging 29 (11): 1754–1762.

    CAS  PubMed  Google Scholar 

  50. Konitsiotis, S., S. Bostantjopoulou, M. Chondrogiorgi, Z. Katsarou, G. Tagaris, I. Mavromatis, E.E. Ntzani, G. Mentenopoulos, and Greek Parkinson Study Group. 2014 Aug 15. Clinical characteristics of Parkinson’s disease patients in Greece: A multicenter, nation-wide, cross-sectional study. Journal of the Neurological Sciences 343 (1–2): 36–40.

    PubMed  Google Scholar 

  51. Thomas, B., and M.F. Beal. 2011. Molecular insights into Parkinson’s disease. F1000 Medicine Reports 3: 7.

  52. Aarsland, D., J. Zaccai, and C. Brayne. 2005. A systematic review of prevalence studies of dementia in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 20 (10): 1255–1263.

    Google Scholar 

  53. Reijnders, J.S., U. Ehrt, W.E. Weber, D. Aarsland, and A.F. Leentjens. 2008 Jan 30. A systematic review of prevalence studies of depression in Parkinson’s disease. Movement Disorders 23 (2): 183–189.

    PubMed  Google Scholar 

  54. Gautier, C.A., O. Corti, and A. Brice. 2014 May 1. Mitochondrial dysfunctions in Parkinson’s disease. Revista de Neurologia 170 (5): 339–343.

    CAS  Google Scholar 

  55. Renault, V.M., P.U. Thekkat, K.L. Hoang, J.L. White, C.A. Brady, D.K. Broz, O.S. Venturelli, T.M. Johnson, P.R. Oskoui, Z. Xuan, and E.E. Santo. 2011 Jul. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene. 30 (29): 3207–3221.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Langley, E., M. Pearson, M. Faretta, U.M. Bauer, R.A. Frye, S. Minucci, P.G. Pelicci, and T. Kouzarides. 2002 May 15. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO Journal 21 (10): 2383–2396.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunet, A., A. Bonni, M.J. Zigmond, M.Z. Lin, P. Juo, L.S. Hu, M.J. Anderson, K.C. Arden, J. Blenis, M.E. Greenberg, et al. 1999 Mar 19. cell 96 (6): 857–868.

    CAS  PubMed  Google Scholar 

  58. Cho, S.H., J.A. Chen, F. Sayed, M.E. Ward, F. Gao, T.A. Nguyen, G. Krabbe, P.D. Sohn, I. Lo, S. Minami, and N. Devidze. 2015 Jan 14. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. The Journal of Neuroscience 35 (2): 807–818.

    PubMed  PubMed Central  Google Scholar 

  59. Saijo, K., B. Winner, C.T. Carson, J.G. Collier, L. Boyer, M.G. Rosenfeld, F.H. Gage, and C.K. Glass. 2009 Apr 3. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137 (1): 47–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leal, M.C., J.C. Casabona, M. Puntel, and F. PITOSSI. 2013 Apr 29. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s disease? Frontiers in Cellular Neuroscience 7: 53.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Benner, E.J., R. Banerjee, A.D. Reynolds, S. Sherman, V.M. Pisarev, V. Tsiperson, C. Nemachek, P. Ciborowski, S. Przedborski, R.L. Mosley, and H.E. Gendelman. 2008. Nitrated α–synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3 (1): e1376.

  62. Tansey, M.G., M.K. McCoy, and T.C. Frank-Cannon. 2007 Nov 1. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Experimental Neurology 208 (1): 1–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferrari, C.C., M.C. Godoy, R. Tarelli, M. Chertoff, A.M. Depino, and F.J. Pitossi. 2006 Oct 1. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1β in the substantia nigra. Neurobiology of Disease 24 (1): 183–193.

    CAS  PubMed  Google Scholar 

  64. Ye, J., Z. Liu, J. Wei, L. Lu, Y. Huang, L. Luo, and H. Xie. 2013 Oct 11. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neuroscience Letters 553: 72–77.

    CAS  PubMed  Google Scholar 

  65. Tennen, R.I., E. Michishita-Kioi, and K.F. Chua. 2012 Feb 3. Finding a target for resveratrol. Cell. 148 (3): 387–389.

    CAS  PubMed  Google Scholar 

  66. Cao, D., M. Wang, X. Qiu, D. Liu, H. Jiang, N. Yang, and R.M. Xu. 2015 Jun 15. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes & Development 29 (12): 1316–1325.

    CAS  Google Scholar 

  67. Hubbard, B.P., A.P. Gomes, H. Dai, J. Li, A.W. Case, T. Considine, T.V. Riera, J.E. Lee, D.W. Lamming, B.L. Pentelute, and E.R. Schuman. 2013 Mar 8. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 339 (6124): 1216–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hou, X., D. Rooklin, H. Fang, and Y. Zhang. 2016 Nov 30. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Scientific Reports 6: 38186.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Modi, S., N. Yaluri, T. Kokkola, and M. Laakso. 2017 Dec 14. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Scientific Reports 7 (1): 1–1.

    CAS  Google Scholar 

  70. Zeng, W., W. Shan, L. Gao, D. Gao, Y. Hu, G. Wang, N. Zhang, Z. Li, X. Tian, W. Xu, and J. Peng. 2015 Nov 3. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Scientific Reports 5: 16013.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bai, X., L. Yao, X. Ma, and X. Xu. 2018 Aug 1. Small molecules as SIRT modulators. Mini Reviews in Medicinal Chemistry 18 (13): 1151–1157.

    CAS  PubMed  Google Scholar 

  72. Qiu, L., Y. Luo, and X. Chen. 2018 Jul 1. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomedicine & Pharmacotherapy 103: 1585–1591.

    CAS  Google Scholar 

  73. Hung, C.H., S.H. Chan, P.M. Chu, and K.L. Tsai. 2015 Oct. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Molecular Nutrition & Food Research 59 (10): 1905–1917.

    CAS  Google Scholar 

  74. Kim, S.C., Y.H. Kim, S.W. Son, E.Y. Moon, S. Pyo, and S.H. Um. 2015 Nov 27. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochemical and Biophysical Research Communications 467 (4): 638–644.

    CAS  PubMed  Google Scholar 

  75. Zhang, C., C. Li, S. Chen, Z. Li, L. Ma, X. Jia, K. Wang, J. Bao, Y. Liang, M. Chen, and P. Li. 2017 Jan 23. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways. Scientific Reports 7 (1): 1–2.

    Google Scholar 

  76. Wang, Y., X. Liang, Y. Chen, and X. Zhao. 2016. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxidative Medicine and Cellular Longevity 2016: 1–9.

    Google Scholar 

  77. Villalba, J.M., and F.J. Alcaín. 2012 Sep. Sirtuin activators and inhibitors. Biofactors. 38 (5): 349–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Alcaín, F.J., and J.M. Villalba. 2009 Apr 1. Sirtuin activators. Expert Opinion on Therapeutic Patents 19 (4): 403–414.

    PubMed  Google Scholar 

  79. Ishisaka, A., S. Ichikawa, H. Sakakibara, M.K. Piskula, T. Nakamura, Y. Kato, M. Ito, K.I. Miyamoto, A. Tsuji, Y. Kawai, and J. Terao. 2011 Oct 1. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radical Biology & Medicine 51 (7): 1329–1336.

    CAS  Google Scholar 

  80. Youdim, K.A., M.Z. Qaiser, D.J. Begley, C.A. Rice-Evans, and N.J. Abbott. 2004 Mar 1. Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radical Biology & Medicine 36 (5): 592–604.

    CAS  Google Scholar 

  81. Zhou, Y., S. Wang, Y. Li, S. Yu, and Y. Zhao. 2018 Jan 9. SIRT1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Frontiers in Molecular Neuroscience 10: 443.

    PubMed  PubMed Central  Google Scholar 

  82. Bhullar, K.S., and B.P. Hubbard. 2015 Jun 1. Lifespan and healthspan extension by resveratrol. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852 (6): 1209–1218.

    CAS  Google Scholar 

  83. Zhang, N., Y. Hu, C. Ding, W. Zeng, W. Shan, H. Fan, Y. Zhao, X. Shi, L. Gao, T. Xu, and R. Wang. 2017 Feb 5. Salvianolic acid B protects against chronic alcoholic liver injury via SIRT1-mediated inhibition of CRP and ChREBP in rats. Toxicology Letters 267: 1–10.

    CAS  PubMed  Google Scholar 

  84. Yang, Q.Y., X.D. Lai, J. Ouyang, and J.D. Yang. 2018 Nov 1. Effects of Ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats. Toxicology. 409: 144–151.

    CAS  PubMed  Google Scholar 

  85. Huang, Y., K.K. Kwan, K.W. Leung, P. Yao, H. Wang, T.T. Dong, and K.W. Tsim. 2019 Oct 1. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: A functional comparison of different extraction solvents. Journal of Ginseng Research 43 (4): 517–526.

    PubMed  Google Scholar 

  86. Kim, D.H., C.H. Park, D. Park, Y.J. Choi, M.H. Park, K.W. Chung, S.R. Kim, J.S. Lee, and H.Y. Chung. 2014 Jun 1. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress. Archives of Pharmacal Research 37 (6): 813–820.

    CAS  PubMed  Google Scholar 

  87. Minor, R.K., J.A. Baur, A.P. Gomes, T.M. Ward, A. Csiszar, E.M. Mercken, K. Abdelmohsen, Y.K. Shin, C. Canto, M. Scheibye-Knudsen, and M. Krawczyk. 2011 Aug 18. SRT1720 improves survival and healthspan of obese mice. Scientific Reports 1: 70.

    PubMed  PubMed Central  Google Scholar 

  88. Milne, J.C., P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, and J.E. Bemis. 2007 Nov. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450 (7170): 712–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gurt, I., H. Artsi, E. Cohen-Kfir, G. Hamdani, G. Ben-Shalom, B. Feinstein, M. El-Haj, and R. Dresner-Pollak. 2015. The Sirt1 activators SRT2183 and SRT3025 inhibit RANKL-induced osteoclastogenesis in bone marrow-derived macrophages and down-regulate Sirt3 in Sirt1 null cells. PLoS One 10 (7): e0134391.

  90. Campagna, J., P. Spilman, B. Jagodzinska, D. Bai, A. Hatami, C. Zhu, T. Bilousova, M. Jun, C.J. Elias, J. Pham, and G. Cole. 2018 Dec 4. A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer’s disease mouse model. Scientific Reports 8 (1): 1–5.

    CAS  Google Scholar 

  91. Ögren, S.O., A.C. Holm, H. Hall, and U.H. Lindberg. 1984 Dec 1. Alaproclate, a new selective 5-HT uptake inhibitor with therapeutic potential in depression and senile dementia. Journal of Neural Transmission 59 (4): 265–288.

    PubMed  Google Scholar 

  92. Kim, M.J., H.J. An, D.H. Kim, B. Lee, H.J. Lee, S. Ullah, S.J. Kim, H.O. Jeong, K.M. Moon, E.K. Lee, and J. Yang. 2018 Feb 15. Novel SIRT1 activator MHY2233 improves glucose tolerance and reduces hepatic lipid accumulation in db/db mice. Bioorganic & Medicinal Chemistry Letters 28 (4): 684–688.

    CAS  Google Scholar 

  93. Yao, Z.Q., X. Zhang, Y. Zhen, X.Y. He, S. Zhao, X.F. Li, B. Yang, F. Gao, F.Y. Guo, L. Fu, and X.Z. Liu. 2018 Jul 10. A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death & Disease 9 (7): 1–4.

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science &Technology Department of Biotechnology (No. BT/IN/Indo-US/Foldscope/39/2015) and Indian Council of Medical Research (3/1/2/76/Neuro/2018-NCD-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Ubaid.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Oxidative stress and inflammation are the leading cause of certain disease.

• SIRT1 is involved in regulation of ROS and inflammation through epigenetic modification of several genes.

• Therapeutic intervention against SIRT1 may open a new gate for the treatment of many diseases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Ubaid, S. Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Inflammation 43, 1589–1598 (2020). https://doi.org/10.1007/s10753-020-01242-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01242-9

KEY WORDS

Navigation