Skip to main content
Log in

miR-1224-5p inhibits the proliferation and invasion of ovarian cancer via targeting SND1

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Emerging evidences have indicated that abnormal expression of microRNAs (miRNAs) contributed to carcinogenesis of ovarian cancer. However, the molecular mechanism of many aberrant expressed miRNAs was not known. Here, we discovered that miR-1224-5p was a downregulated miRNA in ovarian cancer via bioinformatic analysis and RT-qPCR. It was found that upregulation of miR-1224-5p inhibited cell proliferation and invasion ability of ovarian cancer cells. SND1, a well-characterized oncogene, was predicted as a target gene of miR-1224-5p. The western blotting, dual luciferase reporter assay, RNA-binding protein immunoprecipitation assay, and RT-qPCR demonstrated SND1 as a target gene of miR-1224-5p in ovarian cancer. MiR-1224-5p inhibited the expression of mesenchymal markers and increased the expression of epithelial markers in ovarian cancer cells via targeting SND1, indicating miR-1224-5p was involved in epithelial mesenchymal transition. The rescue assay manifested that miR-1224-5p-regulated cell proliferation and invasion mainly rely on downregulation of SND1 in ovarian cancer cells. In conclusion, our study revealed a direct regulatory association between miR-1224-5p and SND1 and their involvement in ovarian carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References:s

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  2. Cannistra SA. Cancer of the ovary. N Engl J Med. 2004;351:2519–29.

    CAS  PubMed  Google Scholar 

  3. Chen Y, Wang DD, Wu YP, et al. MDM2 promotes epithelial-mesenchymal transition and metastasis of ovarian cancer SKOV3 cells. Br J Cancer. 2017;117:1192–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liang H, Yu T, Han Y, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 2018;17:119.

    PubMed  PubMed Central  Google Scholar 

  5. Ebrahimi S, Hashemy SI. MicroRNA-mediated redox regulation modulates therapy resistance in cancer cells: clinical perspectives. Cell Oncol (Dordr). 2019;42:131–41.

    CAS  Google Scholar 

  6. Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs. J Mol Med (Berl). 2011;89:445–57.

    CAS  Google Scholar 

  7. Bhayani MK, Calin GA, Lai SY. Functional relevance of miRNA sequences in human disease. Mutat Res. 2012;731:14–9.

    CAS  PubMed  Google Scholar 

  8. Das J, Podder S, Ghosh TC. Insights into the miRNA regulations in human disease genes. BMC Genomics. 2014;15:1010.

    PubMed  PubMed Central  Google Scholar 

  9. Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: an overview. J Cell Physiol. 2018;233:3846–54.

    CAS  PubMed  Google Scholar 

  10. Wang Z, Ji G, Wu Q, et al. Integrated microarray meta-analysis identifies miRNA-27a as an oncogene in ovarian cancer by inhibiting FOXO1. Life Sci. 2018;210:263–70.

    CAS  PubMed  Google Scholar 

  11. Zhang S, Zhang JY, Lu LJ, Wang CH, Wang LH. MiR-630 promotes epithelial ovarian cancer proliferation and invasion via targeting KLF6. Eur Rev Med Pharmacol Sci. 2017;21:4542–7.

    CAS  PubMed  Google Scholar 

  12. Qian J, Li R, Wang YY, et al. MiR-1224-5p acts as a tumor suppressor by targeting CREB1 in malignant gliomas. Mol Cell Biochem. 2015;403:33–41.

    CAS  PubMed  Google Scholar 

  13. Lian H, Xie P, Yin N, et al. Linc00460 promotes osteosarcoma progression via miR-1224-5p/FADS1 axis. Life Sci. 2019;233:116757.

    CAS  PubMed  Google Scholar 

  14. Gu X, Xue J, Ai L, et al. SND1 expression in breast cancer tumors is associated with poor prognosis. Ann NY Acad Sci. 2018;1433:53–60.

    CAS  PubMed  Google Scholar 

  15. Yu L, Liu X, Cui K, et al. SND1 acts downstream of TGFbeta1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res. 2015;75:1275–86.

    CAS  PubMed  Google Scholar 

  16. Wang N, Du X, Zang L, et al. Prognostic impact of Metadherin-SND1 interaction in colon cancer. Mol Biol Rep. 2012;39:10497–504.

    CAS  PubMed  Google Scholar 

  17. Permuth JB, Reid B, Earp M, et al. Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration. Oncotarget. 2016;7:72381–94.

    PubMed  PubMed Central  Google Scholar 

  18. Xin L, Zhao R, Lei J, et al. SND1 acts upstream of SLUG to regulate the epithelial-mesenchymal transition (EMT) in SKOV3 cells. FASEB J. 2019;33:3795–806.

    CAS  PubMed  Google Scholar 

  19. Yokoi A, Matsuzaki J, Yamamoto Y, et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun. 2018;9:4319.

    PubMed  PubMed Central  Google Scholar 

  20. Tsao SW, Mok SC, Fey EG, et al. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp Cell Res. 1995;218:499–507.

    CAS  PubMed  Google Scholar 

  21. Langhe R. microRNA and ovarian cancer. Adv Exp Med Biol. 2015;889:119–51.

    CAS  PubMed  Google Scholar 

  22. Quitadamo A, Tian L, Hall B, Shi X. An integrated network of microRNA and gene expression in ovarian cancer. BMC Bioinform. 2015;16(Suppl 5):S5.

    Google Scholar 

  23. Teng Y, Su X, Zhang X, et al. miRNA-200a/c as potential biomarker in epithelial ovarian cancer (EOC): evidence based on miRNA meta-signature and clinical investigations. Oncotarget. 2016;7:81621–33.

    PubMed  PubMed Central  Google Scholar 

  24. Elias KM, Fendler W, Stawiski K, et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife. 2017;6:e28932.

    PubMed  PubMed Central  Google Scholar 

  25. Fukagawa S, Miyata K, Yotsumoto F, et al. MicroRNA-135a-3p as a promising biomarker and nucleic acid therapeutic agent for ovarian cancer. Cancer Sci. 2017;108:886–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scarpati DVG, Falcetta F, Carlomagno C, et al. A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;83:1113–9.

    Google Scholar 

  27. Mosakhani N, Lahti L, Borze I, et al. MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet. 2012;205:545–51.

    CAS  PubMed  Google Scholar 

  28. Xiong DD, Xu WQ, He RQ, Dang YW, Chen G, Luo DZ. In silico analysis identified miRNAbased therapeutic agents against glioblastoma multiforme. Oncol Rep. 2019;41:2194–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Q, Zhang R, Liu D. Long non-coding RNA ZEB1-AS1 indicates poor prognosis and promotes melanoma progression through targeting miR-1224-5p. Exp Ther Med. 2019;17:857–62.

    CAS  PubMed  Google Scholar 

  30. Wei Y, Zhang F, Zhang T, et al. LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/beta-catenin/EMT signaling cascade in gastric cancer. Aging (Albany NY). 2019;11:8951–68.

    CAS  Google Scholar 

  31. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    CAS  PubMed  Google Scholar 

  32. Li H, Yu L, Liu J, et al. miR-320a functions as a suppressor for gliomas by targeting SND1 and beta-catenin, and predicts the prognosis of patients. Oncotarget. 2017;8:19723–37.

    PubMed  PubMed Central  Google Scholar 

  33. Emdad L, Janjic A, Alzubi MA, et al. Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness. Neuro Oncol. 2015;17:419–29.

    CAS  PubMed  Google Scholar 

  34. Liu Z, Liang X, Li X, et al. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb). 2019;8:328–40.

    CAS  Google Scholar 

  35. Nguyen PNN, Choo KB, Huang CJ, Sugii S, Cheong SK, Kamarul T. miR-524-5p of the primate-specific C19MC miRNA cluster targets TP53IPN1- and EMT-associated genes to regulate cellular reprogramming. Stem Cell Res Ther. 2017;8:214.

    PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Le Y, Xue JY, Zheng ZJ, Xue YM. Let-7d miRNA prevents TGF-beta1-induced EMT and renal fibrogenesis through regulation of HMGA2 expression. Biochem Biophys Res Commun. 2016;479:676–82.

    CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JW, YH, and CY performed the experiments and analyzed the data. JW and JL collected the specimens and the information of patients. CYe and JL wrote the manuscript.

Corresponding author

Correspondence to Junbao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests, and all authors confirmed its accuracy.

Ethics approval and consent to participate

The protocol of the present study was approved by the ethic committee of China-Japan Union Hospital of Jilin University.

Informed consent

Informed consents were provided by all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hu, Y., Ye, C. et al. miR-1224-5p inhibits the proliferation and invasion of ovarian cancer via targeting SND1. Human Cell 33, 780–789 (2020). https://doi.org/10.1007/s13577-020-00364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00364-4

Keywords

Navigation