Skip to main content
Log in

A differentiable path-following algorithm for computing perfect stationary points

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the computation of perfect stationary point, which is a strict refinement of stationary point. A differentiable homotopy method is developed for finding perfect stationary points of continuous functions on convex polytopes. We constitute an artificial problem by introducing a continuously differentiable function of an extra variable. With the optimality conditions of this problem and a fixed point argument, a differentiable homotopy mapping is constructed. As the extra variable becomes close to zero, the homotopy path naturally provides a sequence of closely approximate stationary points on perturbed polytopes, and converges to a perfect stationary point on the original polytope. Numerical experiments are implemented to further illustrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Van der Laan et al. [27, 28] generalize the concepts of proper Nash equilibrium into stationary points and define the more refined notion of robust stationary point.

  2. For functions that are not twice differentiable, we need to apply some regularization technique, see Zhan and Dang [32] for a smoothing approach for some piecewise-smooth functions which is naturally aligned with the homotopy process.

  3. The proof is trivial. Interested readers are referred to pp. 9 in [10]. The system (4) is obtained from the optimality condition of (3) requiring \(y=x\).

  4. \(H(x,\gamma ,t)\) is twice differentiable, which is a necessary condition in applying the transversality theorem.

  5. Such as noncooperative game theory, general equilibrium theory, fixed point theory, nonlinear optimization theory and engineering.

  6. See [1, 9] for more details about numerical implementation of homotopy methods.

  7. This example is extracted from “Trembling hand perfect equilibrium” on Wikipedia.

  8. For simplicity, in computation we use \(\mathcal{P}=\{(x^1,x^2)\in {\mathbb {R}}^4_+\;|\; x^1_1+x^1_2\le 1,\;x^2_1+x^2_2\le 1\}\) instead of the collection of two simplexes.

  9. To make \({{\mathcal {P}}}\) a compact polytope, we shall add a constraint \(p_1+p_2+p_3\le C\), for a fixed \(C\in {\mathbb {R}}\). In this example, we use \(C=1\). Note that the excess demand is homogeneous of degree zero.

  10. This approach is extended for economies with separable piecewise linear utilities in [12].

  11. The matrix M is determined by W and U, and the solution to LCP(M, 0) provides an equilibrium if the corresponding price vector is positive, see Theorem 1 in [8].

  12. Note that this LCP formulation may not be the best choice in terms of algorithmic efficiency for computing equilibria in the linear exchange economies.

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, New York (1990)

    Book  MATH  Google Scholar 

  2. Chen, B., Chen, X.: A global and local superlinear continuation-smoothing method for \({P}_0\) and \({R}_ 0\) NCP or monotone NCP. SIAM J. Optim. 9(3), 624–645 (1999)

    Article  MathSciNet  Google Scholar 

  3. Chen, B., Harker, P.T.: A continuation method for monotone variational inequalities. Math. Program. 69(1–3), 237–253 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program. 71(1), 51–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Ye, Y.: On homotopy-smoothing methods for box-constrained variational inequalities. SIAM J. Control Optim. 37(2), 589–616 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Dang, C.: A differentiable homotopy method to compute perfect equilibria. In: Mathematical Programming, pp. 1–33 (2019)

  7. Eaves, B.C.: Homotopies for computation of fixed points. Math. Program. 3(1), 1–22 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eaves, B.C.: A finite algorithm for the linear exchange model. J. Math. Econ. 3(2), 197–203 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eaves, B.C., Schmedders, K.: General equilibrium models and homotopy methods. J. Econ. Dyn. Control 23(9), 1249–1279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  11. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35(1), 58–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garg, J., Mehta, R., Sohoni, M., Vazirani, V.V.: A complementary pivot algorithm for market equilibrium under separable, piecewise-linear concave utilities. SIAM J. Comput. 44(6), 1820–1847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Govindan, S., Klumpp, T.: Perfect equilibrium and lexicographic beliefs. Int. J. Game Theory 31(2), 229–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: International Symposium on Algorithmic Game Theory. Springer, Berlin, pp. 198–209 (2010)

  15. Herings, P.J.-J., Peeters, R.: A differentiable homotopy to compute Nash equilibria of n-person games. Econ. Theory 18(1), 159–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herings, P.J.-J., Peeters, R.: Homotopy methods to compute equilibria in game theory. Econ. Theory 42(1), 119–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herings, P.J.-J., Schmedders, K.: Computing equilibria in finance economies with incomplete markets and transaction costs. Econ. Theory 27(3), 493–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Z., Li, Y.: Homotopy method for solving variational inequalities. J. Optim. Theory Appl. 100(1), 207–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mas-Colell, A.: A note on a theorem of F. Browder. Math. Program. 6(1), 229–233 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mas-Colell, A.: The Theory of General Economic Equilibrium: A Differentiable Approach. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  21. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory 7(2), 73–80 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qi, L., Sun, D.: A survey of some nonsmooth equations and smoothing newton methods. In: Progress in Optimization. Springer, Berlin, pp. 121–146 (1999)

  23. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  24. Scarf, H.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math. 15(5), 1328–1343 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4(1), 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. van den Elzen, A., van der Laan, G., Talman, D.: An adjustment process for an economy with linear production technologies. Math. Oper. Res. 19(2), 341–351 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. van der Laan, G., Talman, D., Yang, Z.: Existence and approximation of robust solutions of variational inequality problems over polytopes. SIAM J. Control Optim. 37(2), 333–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. van der Laan, G., Talman, D., Yang, Z.: Refinements of stationary points with applications to noncooperative games and economics. SIAM J. Optim. 16(3), 854–870 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, Q., Yu, B., Feng, G.: Homotopy methods for solving variational inequalities in unbounded sets. J. Glob. Optim. 31(1), 121–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Q., Yu, B., Feng, G., Dang, C.: Condition for global convergence of a homotopy method for variational inequality problems on unbounded sets. Optim. Methods Softw. 22(4), 587–599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Z.: A simplicial algorithm for computing robust stationary points of a continuous function on the unit simplex. SIAM J. Control Optim. 34(2), 491–506 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhan, Y., Dang, C.: A smooth path-following algorithm for market equilibrium under a class of piecewise-smooth concave utilities. Comput. Optim. Appl. 71(2), 381–402 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Z., Yu, B.: A smoothing homotopy method for variational inequality problems on polyhedral convex sets. J. Glob. Optim. 58(1), 151–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by GRF: CityU 11302715 of RGC of Hong Kong SAR Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Theorem 3

(Mas-Colell’s fixed point Theorem, [19]) Let\(\Phi\)be a non-empty, compact and convex set and\(H: \Phi \times [0,1]\rightarrow \Phi\)an upper semi-continuous mapping. Then the set\(H^{-1}=\{(z,t)\in \Phi \times [0,1]\, | \,z\in H(z,t)\}\)contains a connected set\(H^c\)such that\((\Phi \times \{1\}) \cap {H^c} \ne \emptyset\)and\((\Phi \times \{0\}) \cap {H^c} \ne \emptyset\).

Theorem 4

(Transversality Theorem, [20]) Let\(L:S\times {\mathbb {R}}^l\rightarrow {\mathbb {R}}^s\)be\(C^r\), where\(S\subset {\mathbb {R}}^n\)is an open set and\(r\ge 1+\max \{0,n-s\}\). If zero is a regular value ofL, then zero is a regular value of\(L(\cdot ,{\hat{w}}):S\rightarrow {\mathbb {R}}^s\)for almost all fixed\({\hat{w}}\in {\mathbb {R}}^l\).

The following proves zero is a regular value of \(H(x,\gamma ,1)\). This property is used in Theorem 1.

Proof

Notice that f is a (at least) twice differentiable mapping from the polytope \({{{\mathcal {P}}}}=\{x\in {\mathbb {R}}^n |Ax \le b\}\) to \({\mathbb {R}}^n\), \(a_i^{\top }=[a_{i1},\ldots ,a_{in}]\in {\mathbb {R}}^n\) being the ith row of matrix A for \(i\in M\), and \(H(x,\gamma ,t)\) is the left side of (9). As \(t=1\), we have \(H(x,\gamma ,1)=[l(x,\gamma ,1)^\top ,q(x,\gamma ,1)^\top ]^\top\), where \(l(x,\gamma ,1)=-\sum \nolimits _{i=1}^{m} z_i(\gamma ,1)a_i\), and \(q(x,\gamma ,1)=[q_i(x,\gamma ,1)]_{i\in M}\) with \(q_i(x,\gamma ,1)=a_i^{\top }x+s_i(\gamma ,1)+\eta _0-b_i\). The Jacobian matrix is given by

$$\begin{aligned} JH(x,\gamma ,1)=\left[ \begin{array}{lc} 0&{}\quad -A^\top B \\ A&{}\quad C\\ \end{array}\right] \in {\mathbb {R}}^{(n+m)\times (n+m)}, \end{aligned}$$

where B and C are \(m\times m\) diagonal matrices with the ith entry being \(B_{ii}=\frac{\partial z_i(\gamma ,1)}{\partial \gamma _i}\) and \(C_{ii}=\frac{\partial s_i(\gamma ,1)}{\partial \gamma _i}\), respectively. One can easily verify that B and C do not have full rank if \(\gamma _i=0\) for some \(i\in M\). As a result, the Jacobian matrix may not have full rank. However, as we will show, this is not a generic situation.

For \((x,\gamma ,u,\eta ,1)\in {{{\mathcal {P}}}}\times {\mathbb {R}}^m\times {\mathbb {R}}^{m}\times {\mathbb {R}}^m\), replace \(H(x,\gamma ,1)\) with \(H(x,\gamma ,u,\eta ,1)\). The Jacobian matrix of \(H(x,\gamma ,u,\eta ,1)\) is given by

$$\begin{aligned} JH(x,\gamma ,u,\eta ,1)=\left[ \begin{array}{lccc} 0&{}-A^{\top } B&{}-A^{\top }Z&{}0 \\ A&{}C&{}0&{}I_m\\ \end{array}\right] , \end{aligned}$$

where B and C are defined as above, and \(Z=\text {diag}({z_1(\gamma ,1),\ldots ,z_m(\gamma ,1)})\in {\mathbb {R}}^{m\times m}\). Since \(\theta (1)=1\), we have \(z(\gamma ,1)>0\), and \(A^{\top }Z\) has full row rank with \(\text {rank}(A^{\top }Z)=n\). Therefore, \(JH(x,\gamma ,u,\eta ,1)\) is of full row rank and zero is a regular value of \(H(x,\gamma ,u,\eta ,1)\). By a direct application of transversality theorem, for generic \(u\in {\mathbb {R}}^{m}\) and \(\eta \in {\mathbb {R}}^{m}\), zero is a regular value of \(H(x,\gamma ,1)\). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Li, P. & Dang, C. A differentiable path-following algorithm for computing perfect stationary points. Comput Optim Appl 76, 571–588 (2020). https://doi.org/10.1007/s10589-020-00181-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00181-3

Keywords

Navigation