Skip to main content
Log in

C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Stoichiometric control of input substrate (glucose) and native soil organic C (SOC) mineralization was assessed by performing a manipulation experiment based on N or P fertilization in paddy soil. Glucose mineralization increased with nutrient addition up to 11.6% with combined N and P application compared with that without nutrient addition. During 100 days of incubation, approximately 4.5% of SOC was mineralized and was stimulated by glucose addition. Glucose and SOC mineralization increased exponentially with dissolved organic C (DOC):NH4+-N, DOC:Olsen P, and microbial biomass (MB)C:MBN ratios. The relative abundances of Clostridia and β-Proteobacteria (r-strategists) were increased with combined C and NP application at the beginning of the experiment, while the relative abundances of Acidobacteria (K-strategists) were enhanced with the exhaustion of available resource at the end of incubation. The bacteria abundance and diversity were negatively related to the DOC:NH4+-N and DOC:Olsen P, which had direct positive effects (+ 0.63) on SOC mineralization. Combined glucose and NP application decreased the network density of the bacterial community. Moreover, P addition significantly decreased the negative associations among bacterial taxa, which suggested that microbial competition for nutrients was alleviated. The relative abundances of keystone species showed significant positive correlations with SOC mineralization in the soils without P application, revealing that microbes increased their activity for mining of limited nutrients from soil organic matter. Hence, bacteria shifted their community composition and their interactions to acquire necessary elements by increasing SOC mineralization to maintain the microbial biomass C:N:P stoichiometric balance in response to changes in resource stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Banerjee S, Baah-Acheamfour M, Carlyle CN, Bissett A, Richardson AE, Siddique T, Bork EW, Chang SX (2016) Determinants of bacterial communities in Canadian agroforestry systems. Environ Microbiol 18:1805–1816

    Article  PubMed  Google Scholar 

  • Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93:491–507

    Article  Google Scholar 

  • Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Butterly CR, Armstrong RD, Chen D, Tang C (2019) Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2. Biol Fertil Soils 55:17–29

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cederlund H, Börjesson E, Önneby K, Stenström J (2007) Metabolic and cometabolic degradation of herbicides in the fine material of railway ballast. Soil Biol Biochem 39:473–484

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367

    Article  PubMed  Google Scholar 

  • Cleveland C, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Creamer CA, Jones DL, Baldock JA, Farrell M (2014) Stoichiometric controls upon low molecular weight carbon decomposition. Soil Biol Biochem 79:50–56

    Article  CAS  Google Scholar 

  • Cui J, Zhu Z, Xu X, Liu S, Jones D, Kuzyakov Y, Shibistova O, Wu J, Ge T (2020) Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol Biochem 142:107720

    Article  CAS  Google Scholar 

  • de Sosa LL, Glanville HC, Marshall MR, Schnepf A, Cooper DM, Hill PW, Binley A, Jones D (2018) Stoichiometric constraints on the microbial processing of carbon with soil depth along a riparian hillslope. Biol Fertil Soils 54:949–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6:936–943

    Article  Google Scholar 

  • Fang Y, Singh BP, Collins D, Li B, Zhu J, Tavakkoli E (2018) Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils. Soil Biol Biochem 126:168–178

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Finn D, Page K, Catton K, Kienzle M, Robertson F, Armstrong R, Dalal R (2016) Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation. Soil Biol Biochem 99:117–127

    Article  CAS  Google Scholar 

  • Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisk M, Santangelo S, Minick K (2015) Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests. Soil Biol Biochem 81:212–218

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Ge T, Chen X, Yuan H, Li B, Zhu H, Peng P, Li K, Jones DL, Wu J (2013) Microbial biomass, activity, and community structure in horticultural soils under conventional and organic management strategies. Eur J Soil Biol 58:122–128

    Article  CAS  Google Scholar 

  • Ge T, Liu C, Yuan H, Zhao Z, Wu X, Zhu Z, Brookes P, Wu J (2015) Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 392:17–25

    Article  CAS  Google Scholar 

  • Ge T, Wei X, Razavi BS, Zhu Z, Hu Y, Kuzyakov Y, Jones DL, Wu J (2017) Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth and temperature. Soil Biol Biochem 113:108–115

    Article  CAS  Google Scholar 

  • Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biol Biochem 90:87–100

    Article  CAS  Google Scholar 

  • Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004) Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85:1179–1192

  • Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry: an elementary approach using basic principles. Limnol Oceanogr 58:2219–2236

    Article  CAS  Google Scholar 

  • Heuck C, Weig A, Spohn M (2015) Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biol Biochem 85:119–129

    Article  CAS  Google Scholar 

  • Jing Z, Chen R, Wei S, Feng Y, Zhang J, Lin X (2017) Response and feedback of C mineralization to P availability driven by soil microorganisms. Soil Biol Biochem 105:111–120

    Article  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2019) Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biol Fertil Soils 55:265–274

    Article  CAS  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86

    Article  CAS  Google Scholar 

  • Kunath B, Delogu F, Naas A, Arntzen M, Eijsink VGH, Henrissat B, Hvidsten TR, Pope PB (2019) From proteins to polysaccharides: lifestyle and genetic evolution of Coprothermobacter proteolyticus. ISME J 13:603–617

    Article  PubMed  CAS  Google Scholar 

  • Kuribayashi K, Kobayashi Y, Yokoyama K, Fujii K (2017) Digested sludge-degrading and hydrogen-producing bacterial floras and their potential for biohydrogen production. Int Biodeterior Biodegradation 120:58–65

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–245

    Article  CAS  Google Scholar 

  • Li YC, Li YF, Chang SX, Yang YF, Fu SL, Jiang PK, Luo Y, Yang M, Chen ZH, Hu SD, Zhao MX, Liang X, Xu QF, Zhou GM, Zhou JZ (2018) Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biol Biochem 122:173–185

    Article  CAS  Google Scholar 

  • Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, Di H (2019a) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445:55–69

    Article  CAS  Google Scholar 

  • Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y, Wu J (2019b) Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects. Geoderma 338:30–39

    Article  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Ookawa T, Hirasawa T (2000) The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant Soil 223:209–218

    Article  Google Scholar 

  • Luo Z, Wang E, Sun OJ (2016) A meta-analysis of the temporal dynamics of priming soil carbon decomposition by fresh carbon inputs across ecosystems. Soil Biol Biochem 101:96–103

    Article  CAS  Google Scholar 

  • Luo Y, Zhu Z, Liu S, Peng P, Xu J, Brookes P, Ge T, Wu J (2019) Nitrogen fertilization increases rice rhizodeposition and its stabilization in soil aggregates and the humus fraction. Plant Soil 445:125–135

    Article  CAS  Google Scholar 

  • Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104:7600–7605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner MJB (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55

    Article  CAS  Google Scholar 

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2011) Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–782

    Article  Google Scholar 

  • Murase J, Matsui Y, Katoh M, Sugimoto A, Kimura M (2006) Incorporation of 13C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water. Soil Biol Biochem 38:3483–3491

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Soil Biology. Springer Verlag, Berlin Heidelberg, pp 215–241

    Chapter  Google Scholar 

  • Nannipieri P, Trasar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus, methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, WI: American Society of Agronomy, Soil Science Society of America 403–430

  • Phillips D, Newsome S, Gregg J (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527

    Article  PubMed  Google Scholar 

  • Podosokorskaya O, Bonch-Osmolovskaya EV, Beskorovaynyy A, Toshchakov S, Kolganova T, Kublanov I (2014) Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 64:2657–2266

    Article  PubMed  CAS  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. BioScience 46:609–620

    Article  Google Scholar 

  • Qiao N, Wang J, Xu X, Shen Y, Long X, Hu Y, Schaefer D, Wang S, Kuzyakov Y (2019) Priming alters soil carbon dynamics during forest succession. Biol Fertil Soils 55:339–350

    Article  CAS  Google Scholar 

  • Rutigliano FA, D’Ascoli R, Virzo De Santo A (2004) Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biol Biochem 36:1719–1729

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Sci 43:313–343

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939

    Article  PubMed  Google Scholar 

  • Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ (2016) Stoichiometry of microbial carbon use efficiency in soils. Ecol Monogr 86:172–189

    Article  Google Scholar 

  • Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78

    Article  PubMed  CAS  Google Scholar 

  • Sperfeld M, Diekert G, Studenik S (2019) Community dynamics in a nitrate-reducing microbial consortium cultivated with p-alkylated vs. non-p-alkylated aromatic compounds. FEMS Microbiol Ecol 95:fiy200

    CAS  Google Scholar 

  • Stotzky G, Norman AG (1961) Factors limiting microbial activities in soil. Arch Microbiol 40:341–369

    CAS  Google Scholar 

  • Tirandaz H, Dastgheib SMM, Amoozegar MA, Shavandi M, de la Haba RR, Ventosa A (2015) Pseudorhodoplanes sinuspersici gen. nov., sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 65:4743–4748

    Article  PubMed  CAS  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhu Z, Shahbaz M, Chen L, Liu S, Inubushi K, Wu J, Ge T (2019) Split N and P addition decreases straw mineralization and the priming effect of a paddy soil: a 100-day incubation experiment. Biol Fertil Soils 55:701–712

    Article  CAS  Google Scholar 

  • Wei X, Hu Y, Peng P, Zhu Z, Atere CT, O’Donnell AG, Wu J, Ge T (2017) Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biol Fertil Soils 53:767–776

    Article  CAS  Google Scholar 

  • Wei X, Hu Y, Razavi BS, Zhou J, Shen J, Nannipieri P, Wu J, Ge T (2019a) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70

    Article  CAS  Google Scholar 

  • Wei X, Razavi BS, Hu Y, Xu X, Zhu Z, Liu Y, Kuzyakov Y, Li Y, Wu J, Ge T (2019b) C/P stoichiometry of dying rice root defines the spatial distribution and dynamics of enzyme activities in root-detritusphere. Biol Fertil Soils 55:251–263

    Article  CAS  Google Scholar 

  • Wei X, Zhu Z, Wei L, Wu J, Ge T (2019c) Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10:100145

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Yuan H, Zhu Z, Liu S, Ge T, Jing H, Li B, Liu Q, Lynn TM, Wu J, Kuzyakov Y (2016) Microbial utilization of rice root exudates: C-13 labeling and PLFA composition. Biol Fertil Soils 52:615–627

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, He Y, Liu H, Dumont MG, Brookes PC, Xu J (2019) Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biol Biochem 131:229–237

    Article  CAS  Google Scholar 

  • Zhu Z, Zeng G, Ge T, Hu Y, Tong C, Shibistova O, He X, Wang J, Guggenberger G, Wu J (2016) Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - part 1: decomposition and priming effect. Biogeosciences 13:4481–4489

    Article  CAS  Google Scholar 

  • Zhu Z, Ge T, Hu Y, Zhou P, Wang T, Shibistova O, Guggenberger G, Su Y, Wu J (2017) Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization. Plant Soil 416:243–257

    Article  CAS  Google Scholar 

  • Zhu Z, Ge T, Liu S, Hu Y, Ye R, Xiao M, Tong C, Kuzyakov Y, Wu J (2018a) Rice rhizodeposits affect organic matter priming in paddy soil: the role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol Biochem 116:369–377

    Article  CAS  Google Scholar 

  • Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, Shibistova O, Guggenberger G, Wu J (2018b) Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem 121:67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Public Service Technology Center of the Institute of Subtropical Agriculture and the Chinese Academy of Sciences for technical assistance.

Funding

This study was financially supported by the National Natural Science Foundation of China (41430860, 41877104, and 41761134095); Innovative Research Groups of the Natural Science Foundation of Hunan Province (2019JJ10003); Natural Science Foundation of Hunan Province (2019JJ30028); the Youth Innovation Team Project of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (2017QNCXTD_GTD); the Youth Innovation Promotion Association (2019357); the China Scholarship Council (201904910049); and the Chinese Academy of Sciences President’s International Fellowship Initiative to Georg Guggenberger (2018VCA0031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenke Zhu or Jinshui Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhu, Z., Liu, Y. et al. C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol Fertil Soils 56, 1093–1107 (2020). https://doi.org/10.1007/s00374-020-01468-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01468-7

Keywords

Navigation