Skip to main content
Log in

Finite element investigation of IGSCC-prone zone in AISI 304L multipass groove welds

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

AISI 304L stainless steel is most commonly used for spent nuclear fuel management; however, the welded joints of this steel are susceptible to intergranular stress corrosion cracking (IGSCC) under the influence of low-temperature sensitization. In the present research, the temperature history of two different groove designs (conventional and narrow groove) has been analyzed to ascertain the propensity of the weld zone to intergranular corrosion (IGC). 3D finite element models (FEMs) have been developed to retrieve the nodal thermal history and predict the region susceptible to IGSCC. The FEM results predicted a lower duration of exposure to the IGC temperature range for narrow groove design as compared to conventional design. The lower duration of exposure exhibits a lower propensity to chromium carbide precipitation and the tendency to IGSCC. The FEM analysis also has been used to observe the difference in the size of the region susceptible to IGSCC in the heat-affected zone of the respective weld designs. The predicted results obtained from the numerical analysis were validated by comparing the chromium carbide precipitation for both the groove designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Verma J, Taiwade RV, Khatirkar RK, Sapate SG, Gaikwad AD. Microstructure, mechanical and intergranular corrosion behavior of dissimilar DSS 2205 and ASS 316L shielded metal arc welds. Trans Indian Inst Met. 2017;70:225–37. https://doi.org/10.1007/s12666-016-0878-8.

    Article  Google Scholar 

  2. Xin J, Song Y, Fang C, Wei J, Huang C, Wang S. Evaluation of inter-granular corrosion susceptibility in 316LN austenitic stainless steel weldments. Fusion Eng Des. 2018;133:70–6. https://doi.org/10.1016/j.fusengdes.2018.05.078.

    Article  Google Scholar 

  3. Kessal BA, Fares C, Meliani MH, Alhussein A, Bouledroua O, François M. Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone. Eng Fail Anal. 2020;107:104200. https://doi.org/10.1016/j.engfailanal.2019.104200.

    Article  Google Scholar 

  4. Javidi M, Haghshenas SMS, Shariat MH. CO2 corrosion behavior of sensitized 304 and 316 austenitic stainless steels in 3.5wt% NaCl solution and presence of H2S. Corros Sci. 2020;163:108230. https://doi.org/10.1016/j.corsci.2019.108230.

    Article  Google Scholar 

  5. Lee HT, Te Chen C. Numerical and experimental investigation into effect of temperature field on sensitization of AISI 304 in butt welds fabricated by gas tungsten arc welding. Mater Trans. 2011;52:1506–14. https://doi.org/10.2320/matertrans.m2011071.

    Article  Google Scholar 

  6. Kou S. Corrosion-resistant materials: stainless steels. In: Kou S, editor. Welding Metallurgy. 2nd ed. Hoboken, New Jersey: Wiley; 2002.

    Chapter  Google Scholar 

  7. Sandusky DW, Okada T, Saito T. Advanced boiling water reactor materials technology. Mater Perform. 1990;29:66–71.

    Google Scholar 

  8. Singh PK, Bhasin V, Ghosh AK, Kushwaha HS. Structural integrity of main heat transport system piping of AHWR. BARC News Lett. 2008;299:2–18.

    Google Scholar 

  9. Kekkonen T. Metallurgical effects on the corrosion resistance of a low temperature sensitized weld AISI type 304 stainless steel. Corros Sci. 1985;25:821–36.

    Article  Google Scholar 

  10. Schmidt CG, Caligiuri RD, Eiselstein LE, Wing SS, Cubicciotti D. Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone. Metall Trans A Phys Metall Mater Sci. 1987;18A:1483–93. https://doi.org/10.1007/BF02646660.

    Article  Google Scholar 

  11. Singh R., Das G., Suman S., Singh PK. Response of weld joints in stainless steel 304LN pipe to low temperature sensitization. In: IIW IC, Chennai, 2008, pp. 551–556.

  12. Hsu CH, Chen TC, Huang RT, Tsay LW. Stress corrosion cracking susceptibility of 304L substrate and 308L weld metal exposed to a salt spray. Materials. 2017;10:1–14. https://doi.org/10.3390/ma10020187.

    Article  Google Scholar 

  13. Giri A, Mahapatra MM, Sharma K, Singh PK. A study on the effect of weld groove designs on residual stresses in SS 304LN thick multipass pipe welds. Int J Steel Struct. 2017;17:65–75. https://doi.org/10.1007/s13296-016-0118-4.

    Article  Google Scholar 

  14. Kim IS, Lee JS, Kimura A. Embrittlement of ER309L stainless steel clad by σ-phase and neutron irradiation. J Nucl Mater. 2004;329–333:607–11. https://doi.org/10.1016/j.jnucmat.2004.04.104.

    Article  Google Scholar 

  15. Nadimi S, Khoushehmehr RJ, Rohani B, Mostafapour A. Investigation and analysis of weld induced residual stresses in two dissimilar pipes by finite element modeling. J Appl Sci. 2008;8:1014–20.

    Article  Google Scholar 

  16. Brickstad B, Josefson BL. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. Int J Press Vessel Pip. 1998;75:11–25. https://doi.org/10.1016/S0308-0161(97)00117-8.

    Article  Google Scholar 

  17. Yaghi A, Hyde TH, Becker AA, Sun W, Williams JA. Residual stress simulation in thin and thick-walled stainless steel pipe welds including pipe diameter effects. Int J Press Vessel Pip. 2006;83:864–74. https://doi.org/10.1016/j.ijpvp.2006.08.014.

    Article  Google Scholar 

  18. Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat source. Metall Trans B. 1984;15B:299–305.

    Article  Google Scholar 

  19. Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37:269–77. https://doi.org/10.1016/j.commatsci.2005.07.007.

    Article  Google Scholar 

  20. Gannon L, Liu Y, Pegg N, Smith M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates. Mar Struct. 2010;23:385–404. https://doi.org/10.1016/j.marstruc.2010.05.002.

    Article  Google Scholar 

  21. Gery D, Long H, Maropoulos P. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol. 2005;167:393–401. https://doi.org/10.1016/j.jmatprotec.2005.06.018.

    Article  Google Scholar 

  22. Deng D, Kiyoshima S. FEM prediction of welding residual stresses in a SUS304 girth-welded pipe with emphasis on stress distribution near weld start/end location. Comput Mater Sci. 2010;50:612–21. https://doi.org/10.1016/j.commatsci.2010.09.025.

    Article  Google Scholar 

  23. Pandey C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:2126–42. https://doi.org/10.1007/s11661-020-05660-0.

    Article  Google Scholar 

  24. Warikh M, Rashid A, Gakim M, Rosli ZM, Azam MA. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion. Int J Electrochem Sci. 2012;7:9465–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taraphdar, P.K., Pandey, C. & Mahapatra, M.M. Finite element investigation of IGSCC-prone zone in AISI 304L multipass groove welds. Archiv.Civ.Mech.Eng 20, 54 (2020). https://doi.org/10.1007/s43452-020-00056-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00056-8

Keywords

Navigation