Skip to main content

Advertisement

Log in

A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 18 July 2020

This article has been updated

Abstract

Liver injury is the early stage of liver disease, which is caused by multiple factors. Baicalein has shown extensive bioactivity. But whether baicalein has a protective effect on liver injury has not been reported thus far. In this study, we aim to investigate the protective effects of baicalein on liver injury induced by oxidative stress. H2O2 and CCl4 were employed to establish liver injury models in vivo and in vitro, respectively. The protective effect of baicalein on oxidative stress–induced liver injury was evaluated by detecting the mitochondrial dynamics, the level of autophagy and apoptosis, the histopathology of liver, the indicators of liver function, and the level of oxidative stress in vitro and in vivo. March5 is the key regulator during liver injury induced by oxidative stress. March5 can ubiquitinate Drp1 and promote Drp1 degradation, then maintain the homeostasis of mitochondrial dynamics, keep the balance of autophagy, and reduce apoptosis. Baicalein is able to effectively reduce liver injury; it can contribute to the expression of March5 by regulating KLF4 during liver injury. These results indicate that baicalein plays a key role in salvaging liver from injury induced by oxidative stress via regulating the KLF4-March5-Drp1 signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 18 July 2020

    The original version of this article unfortunately contains errors in methods and figures. In methods, animal experiments part: ���2��ml/kg��� and ���after two days��� were described incorrectly which were actually ���4��ml/kg��� and ���after eight days��� respectively.

Abbreviations

March5:

Membrane-associated RING-CH 5

ROS:

Reactive oxygen species

Drp1:

Dynamin related protein 1

KLF4:

Kruppel-like factor 4

H2DCFDA:

2′,7′-Dichlorofluorescin-diacetate

8-OHG:

8-Hydroxyguanosine

PARP:

Poly (ADP‑ribose) polymerase

Bcl:

B‑cell lymphoma‑2

BAX:

Bcl-2 associated X protein

LC3-I:

Microtubule associated protein 1 light chain 3 I

LC3-II:

Microtubule associated protein 1 light chain 3 II

SiRNA:

Small interfering RNA

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

DBIL:

Direct bilirubin

TBIL:

Total bilirubin

SOD:

Superoxide dismutase

CAT:

Catalase; GSH-PX, glutathione peroxidase

References

  1. Wang G, Yeung CK, Wong WY, Zhang N, Wei YF, Zhang JL, Yan Y, Wong CY, Tang JJ, Chuai M, Lee KK, Wang LJ, Yang X (2016) Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production. Journal of agricultural and food chemistry 64(7):1610–1617. https://doi.org/10.1021/acs.jafc.5b05897

    Article  CAS  PubMed  Google Scholar 

  2. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut 55(4):569–578. https://doi.org/10.1136/gut.2005.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghafoory S, Varshney R, Robison T, Kouzbari K, Woolington S, Murphy B, Xia L (2018) Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv 2(5):470–480. https://doi.org/10.1182/bloodadvances.2017010868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li C, Ming Y, Hong W, Tang Y, Lei X, Li X, Mao Y (2018) Comparison of hepatic transcriptome profiling between acute liver injury and acute liver failure induced by acetaminophen in mice. Toxicol Lett 283:69–76. https://doi.org/10.1016/j.toxlet.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  5. Thawley V (2017) Acute Liver Injury and Failure. Vet Clin North Am Small Anim Pract 47(3):617–630. https://doi.org/10.1016/j.cvsm.2016.11.010

    Article  PubMed  Google Scholar 

  6. Lee KSSS, Li D, Ramjit A, Serrano K, Ginsberg MD, Ding BS, Rafii S, Madoff DC (2017) Catheter-directed Intraportal Delivery of Endothelial Cell Therapy for Liver Regeneration: A Feasibility Study in a Large-Animal Model of Cirrhosis. Radiology 285(1):114–123

    Article  Google Scholar 

  7. Fukui H, Saito H, Ueno Y, Uto H, Obara K, Sakaida I, Shibuya A, Seike M, Nagoshi S, Segawa M, Tsubouchi H, Moriwaki H, Kato A, Hashimoto E, Michitaka K, Murawaki T, Sugano K, Watanabe M, Shimosegawa T (2016) Evidence-based clinical practice guidelines for liver cirrhosis 2015. J Gastroenterol 51(7):629–650. https://doi.org/10.1007/s00535-016-1216-y

    Article  CAS  PubMed  Google Scholar 

  8. Nagai T, Yamada H (1989) Inhibition of mouse liver sialidase by the root of Scutellaria baicalensis. Planta Med 55(1):27–29. https://doi.org/10.1055/s-2006-961769

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Luo W, Ng TW, Leung PC, Zhang C, Leung KC, Jin L (2017) Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells. Nanoscale 9(35):12897–12907. https://doi.org/10.1039/c7nr02546g

    Article  CAS  PubMed  Google Scholar 

  10. Ma Z, Otsuyama K, Liu S, Abroun S, Ishikawa H, Tsuyama N, Obata M, Li FJ, Zheng X, Maki Y, Miyamoto K, Kawano MM (2005) Baicalein, a component of Scutellaria radix from Huang-Lian-Jie-Du-Tang (HLJDT), leads to suppression of proliferation and induction of apoptosis in human myeloma cells. Blood 105(8):3312–3318. https://doi.org/10.1182/blood-2004-10-3915

    Article  CAS  PubMed  Google Scholar 

  11. Sithisarn P, Rojsanga P, Sithisarn P (2019) Inhibitory Effects on Clinical Isolated Bacteria and Simultaneous HPLC Quantitative Analysis of Flavone Contents in Extracts from Oroxylum indicum. Molecules 24(10):1937. https://doi.org/10.3390/molecules24101937

    Article  CAS  PubMed Central  Google Scholar 

  12. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. The Journal of cell biology 178(1):71–84. https://doi.org/10.1083/jcb.200611064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R (2006) A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J 25(15):3618–3626. https://doi.org/10.1038/sj.emboj.7601249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang C, Shi Z, Zhang L, Zhou Z, Zheng X, Liu G, Bu G, Fraser PE, Xu H, YW Z (2016) Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. J Cell Sci 29(5):994–1002. https://doi.org/10.1242/jcs.176792

    Article  CAS  Google Scholar 

  15. Yonashiro R, Sugiura A, Miyachi M, Fukuda T, Matsushita N, Inatome R, Ogata Y, Suzuki T, Dohmae N (2009) Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol Biol Cell 20(21):4524–4530. https://doi.org/10.1091/mbc.E09-02-0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Chi Q, Hu X, Cong Y, Li S (2019) Hydrogen sulfide-induced oxidative stress leads to excessive mitochondrial fission to activate apoptosis in broiler myocardia. Ecotoxicol Environ Saf 183:109578. https://doi.org/10.1016/j.ecoenv.2019.109578

    Article  CAS  PubMed  Google Scholar 

  17. Li PF, Li J, Müller EC, Otto A, Dietz R, vH R (2002) Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 10(2):247–258. https://doi.org/10.1016/s1097-2765(02)00600-7

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Long B, Jiao JQ, Wang JX, Liu JP, Li Q, Li PF (2012) miR-484 regulates mitochondrial network through targeting Fis1. Nature communications 3:781. https://doi.org/10.1038/ncomms1770

    Article  CAS  PubMed  Google Scholar 

  19. Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17(1):71–78. https://doi.org/10.1038/nm.2282

    Article  CAS  PubMed  Google Scholar 

  20. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y (2015) The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 16(11):26087–26124. https://doi.org/10.3390/ijms161125942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hackenhaar FS, Fumagalli F, Li Volti G, Sorrenti V, Russo I, Staszewsky L, Masson S, Latini R (2014) Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat. J Biomed Sci. https://doi.org/10.1186/s12929-014-0070-6

    Article  PubMed  PubMed Central  Google Scholar 

  22. Medina V, Edmonds B, Young GP, James R, Appleton S (1997) Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res 57(17):3697–3707

    CAS  PubMed  Google Scholar 

  23. Wang H, Ge W, Jiang W, Li D, Ju X (2018) SRPK1siRNA suppresses K562 cell growth and induces apoptosis via the PARPcaspase3 pathway. Molecular medicine reports 17(1):2070–2076. https://doi.org/10.3892/mmr.2017.8032

    Article  CAS  PubMed  Google Scholar 

  24. Salazar G, Cullen A, Huang J, Zhao Y, Serino A, Hilenski L, Patrushev N, Forouzandeh F, Hwang HS (2019) SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy. https://doi.org/10.1080/15548627.2019.1659612

    Article  PubMed  Google Scholar 

  25. Yang B, Xue Q, Guo J, Wang X, Zhang Y, Guo K, Li W, Chen S, Xue T, Qi X, Wang J (2019) Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity. Autophagy. https://doi.org/10.1080/15548627.2019.1643184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cao P, Sun J, Sullivan MA, Huang X, Wang H, Zhang Y, Wang N, Wang K (2018) Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int J Biol Macromol 111:1133–1139. https://doi.org/10.1016/j.ijbiomac.2018.01.139

    Article  CAS  PubMed  Google Scholar 

  27. Gu H, Li Q, Huang S, Lu W, Cheng F, Gao P, Wang C, Miao L, Mei Y, Wu M (2015) Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nature communications 6:7112. https://doi.org/10.1038/ncomms8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fonseca TB, Sanchez-Guerrero A, Milosevic I, Raimundo N (2019) Mitochondrial fission requires DRP1 but not dynamins. Nature 570(7761):E34–E42. https://doi.org/10.1038/s41586-019-1296-y

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez-Lopez E, Zhong Z, Stubelius A, Sweeney SR, Booshehri LM, Antonucci L, Liu-Bryan R, Lodi A, Terkeltaub R, Lacal JC, Murphy AN, Hoffman HM, Tiziani S, Guma M, Karin M (2019) Choline Uptake and Metabolism Modulate Macrophage IL-1beta and IL-18 Production. Cell Metab 29(6):1350–1362. https://doi.org/10.1016/j.cmet.2019.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takeda K, Nagashima S, Shiiba I, Uda A, Tokuyama T, Ito N, Fukuda T, Matsushita N, Ishido S, Iwawaki T, Uehara T, Inatome R, Yanagi S (2019) MITOL prevents ER stress-induced apoptosis by IRE1alpha ubiquitylation at ER-mitochondria contact sites. The EMBO journal. https://doi.org/10.15252/embj.2018100999

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang C-H, Ting W-J, Shen C-Y, Hsu H-H, Lin Y-M, Chang S-H, Tsai F-J, Padma VV, Huang C-Y, Tsai Y (2015) SHSST-cyclodextrin complex inhibits TGF-β/Smad3/CTGF to a greater extent than silymarin in a rat model of carbon tetrachloride-induced liver injury. Molecular medicine reports 12(4):6053–6059. https://doi.org/10.3892/mmr.2015.4190

    Article  CAS  PubMed  Google Scholar 

  32. Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, Oakley F, Burt AD, Wilson CL, Anstee QM, Barter MJ, Masson S, Elsharkawy AM, Mann DA, Mann J (2012) Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 18(9):1369–1377. https://doi.org/10.1038/nm.2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zira A, Kostidis S, Theocharis S, Sigala F, Engelsen SB, Andreadou I, Mikros E (2013) 1H NMR-based metabonomics approach in a rat model of acute liver injury and regeneration induced by CCl4 administration. Toxicology 303:115–124. https://doi.org/10.1016/j.tox.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  34. Nissen NN, M P (2002) Hepatocellular carcinoma: the high-risk patient. J Clin Gastroenterol 35:79–85. https://doi.org/10.1097/00004836-200211002-00003

    Article  Google Scholar 

  35. Sjouke B, Langslet G, Ceska R, Nicholls SJ, Nissen SE, Öhlander M, Ladenson PW, Olsson AG, Hovingh GK, Kastelein JJP (2014) Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. The Lancet Diabetes & Endocrinology 2(6):455–463. https://doi.org/10.1016/s2213-8587(14)70006-3

    Article  CAS  Google Scholar 

  36. Cao WR, Ge JQ, Xie X, Fan ML, Fan XD, Wang H, Dong ZY, Liao ZH, Lan XZ, Chen M (2017) Protective effects of petroleum ether extracts of Herpetospermum caudigerum against alpha-naphthylisothiocyanate-induced acute cholestasis of rats. J Ethnopharmacol 198:139–147. https://doi.org/10.1016/j.jep.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  37. Zhu X, Yao P, Liu J, Guo X, Jiang C, Tang Y (2010) Baicalein attenuates impairment of hepatic lysosomal acidification induced by high fat diet via maintaining V-ATPase assembly. Food Chem Toxicol 136:110990. https://doi.org/10.1016/j.fct.2019.110990

    Article  CAS  Google Scholar 

  38. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194. https://doi.org/10.1038/nri3623

    Article  CAS  PubMed  Google Scholar 

  39. Yang CH, Ting WJ, Day CH, Ju DT, Yeh YL, Chung LC, Tsai FJ, Tsai CH, Tsai Y, Huang CY (2014) SHSST cyclodextrin complex prevents the fibrosis effect on CCl4- induced cirrhotic cardiomyopathy in rats through TGF-β pathway inhibition effects. Int J Mol Sci. 15(5):8037–8048. https://doi.org/10.3390/ijms15058037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo M, Wang Y, Zhao H, Mu M, Yang X, Fei D, Liu Y, Zong H, Xing M (2020) Oxidative damage under As and/or Cu stress leads to apoptosis and autophagy and may be cross-talking with mitochondrial disorders in bursa of Fabricius. J Inorg Biochem 205:110989. https://doi.org/10.1016/j.jinorgbio.2019.110989

    Article  CAS  PubMed  Google Scholar 

  41. Schwabe RF, Luedde T (2018) Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol 15(12):738–752. https://doi.org/10.1038/s41575-018-0065-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. dO MR, SF N, SH I, EO MD, SM N (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308. https://doi.org/10.1016/j.phrs.2015.08.021

    Article  CAS  Google Scholar 

  43. Gao L, Zhou F, Wang KX, Zhou YZ, Du GH, Qin XM (2020) Baicalein protects PC12 cells from Aβ-induced cytotoxicity via inhibition of apoptosis and metabolic disorders. Life Sci 248:117471. https://doi.org/10.1016/j.lfs.2020.117471

    Article  CAS  PubMed  Google Scholar 

  44. Song M, Mihara K, Chen Y, Scorrano L (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21(2):273–286. https://doi.org/10.1016/j.cmet.2014.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (grant numbers 81741173; 31430041; 31671447; 91849209).

Author information

Authors and Affiliations

Authors

Contributions

ZY, YW and PL generated the idea, edited the manuscript; ZY and QL performed the experiments and analyzed the data; ZY, QL prepared the manuscript; PL provided the funding.

Corresponding authors

Correspondence to Yin Wang or Peifeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and animals

This article contained studies with mice. All experiments were performed according to the protocols approved by the Institutional Animal Care and Use Committee of Affiliated Hospital of Qingdao University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Li, Q., Wang, Y. et al. A potent protective effect of baicalein on liver injury by regulating mitochondria-related apoptosis. Apoptosis 25, 412–425 (2020). https://doi.org/10.1007/s10495-020-01608-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01608-2

Keywords

Navigation