Skip to main content
Log in

Bivariate flood distribution analysis under parametric copula framework: a case study for Kelantan River basin in Malaysia

  • Research Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Flood is becoming an intensive hydro-climatic issue at the Kelantan River basin in Malaysia. Univariate frequency analysis would be unreliable due to multidimensional behaviour of flood, which often demands multivariate flow exceedance probabilities. The joint distribution analysis of multiple interacting flood characteristics, i.e. flood peak, volume and duration, is very useful for understanding critical hydrologic behaviour at a river basin scale. In this paper, a copula-based methodology is incorporated for multivariate flood frequency analysis for the 50-year annual basis flood characteristics of Kelantan River basin at Guillemard bridge station in Malaysia. Investigation reveals that the Lognormal (2P), Johnson SB-4P and Gamma-3P are selected as marginal distributions for the flood peak flow, volume and duration series. Several bivariate families such as mono-parametric, bi-parametric (i.e. mixed version) and rotated version of Archimedean copulas and also the elliptical copula are introduced to cover a large dependence pattern of flood characteristics. The dependence parameter of bivariate copulas is estimated by the method of moments (MOM) based on the inversion of Kendall’s tau and maximum pseudo-likelihood estimator. To analytically validate and recognize most parsimonious copulas, GOF test and Cramer–von Mises distance statistics (Sn) with the parametric bootstrap method are employed. The Gaussian copula is identified as the most justifiable model for joint modelling of the flood peak–volume and peak–duration combination for MOM-based parameter estimation procedure. Similarly, the Frank copula is selected as the best-fitted structure for modelling peak–duration combination based on MPL estimators, but the MOM estimator recognized Gaussian copula as most suitable for peak–volume pair. Furthermore, the best-fitted copulas are used for obtaining the joint and conditional return periods of the flood characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdulkareem JH, Sulaiman WNA (2015) Trend analysis of precipitation data in flood source areas of Kelantan River basin, Malaysia. In: The 3rd international conference in water resources, ICWR-2015, pp 174–188

  • Adamowaski K (1985) Nonparametric kernels estimation of flood frequencies. Water Resour Res 21(11):1585–1590

    Article  Google Scholar 

  • Adamowski K (1989) A monte Carlo comparison of parametric and nonparametric estimations of flood frequencies. J Hydrol 108:295–308

    Article  Google Scholar 

  • Adnan NA, Atkinson PM (2011) Exploring the impact of climate and land use changes on streamflow trends in a monsoon catchment. Int J Climatol 31:815–831

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19(6):716–722

    Article  Google Scholar 

  • Alina B (2018) Copula Modeling for world’s biggest competitors. Master Thesis, Amsterdam School of Economics, University of Amsterdam

  • Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49(268):765–769

    Article  Google Scholar 

  • Bain LJ, Engelhardt M (1991) Statistical Analysis of Reliability and Life-Testing Models. Deker, New York

    Google Scholar 

  • Blazkova S, Beven K (2004) Flood frequency estimation by continuous simulation of subcatchmnets rainfalls and discharges with the aim of improving dam safety assessments in a large basin in the Czech Republic. J Hydrol 292:153–172

    Article  Google Scholar 

  • Bobee B, Rasmussen PF (1994) Statistical analysis of annual flood series. In: Menon J (ed) Trend in hydrology, vol 1. Council of Scientific Research Integration, New Delhi, pp 117–135

    Google Scholar 

  • Calver A, Lamb R (1995) Flood frequency estimation using continuous rainfall-runoff modelling. Phys Chem Earth 20(479):483

    Google Scholar 

  • Chan NW (1997) Institutional arrangement of flood hazard management in Malaysia: an evaluation using criteria approach. Disasters 21:206–222

    Article  Google Scholar 

  • Cong RG, Brady M (2011) The interdependence between rainfall and temperature: copula analyses. Sci World J 2011, 405675

    Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Constantino M, Larran M, Brebbia CA (2008) Computational finance and its applications III, Volume 41 of WIT transactions on information and communication technologies, WIT Press, 2008

  • Correia FN (1987) Multivariate partial duration series in flood risk analysis. In: Singh VP (ed) Hydrologic frequency modelling. Reidel, Dordrecht, pp 541–554

    Chapter  Google Scholar 

  • Cunnane C (1978) Unniased plotting positioning-a review. J Hydrol 37:205–222

    Article  Google Scholar 

  • Cunnane C (1987) Review of statistical models for flood frequency estimation. In: Singh VP (ed) Hydrologic frequency modeling. Reidel, Dordrecht, pp 49–95

    Chapter  Google Scholar 

  • Daneshkhan A, Remesan R, Omid C, Holman IP (2016) Probabilistic modelling of flood characteristics with parametric and minimum information pair-copula model. J Hydrol 540:469–487

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res 108(D2):4067. https://doi.org/10.1029/2002JD002534

    Article  Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check the adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • DID (Drainage and Irrigation Department) (2000) Annual flood report of DID for Peninsular Malaysia. Unpublished report. DID, Kuala Lumpur

  • DID (Drainage and Irrigation Department Malaysia) (2003) Annual flood report of DID for Peninsular Malaysia. Unpublished report. DID, Kuala Lumpur

  • DID (Drainage and Irrigation Department Malaysia) (2004) Annual flood report of DID for Peninsular Malaysia. Unpublished report. DID, Kuala Lumpur

  • Dooge JCE (1986) Looking for hydrologic laws. Water Resour Res 22(9):465–485

    Google Scholar 

  • Escalante C, Raynal JA (1998) Multivariate estimation of floods: the trivariate gumble distribution. J Stat Comput Simul 61:313–340

    Article  Google Scholar 

  • Escalante C, Raynal JA (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrol Sci 53(3):550–567

    Article  Google Scholar 

  • Fan L, Zheng Q (2016) Probabilistic modelling of flood events using the entropy copula. Adv Water Resour 97:233–240

    Article  Google Scholar 

  • Farrel PJ, Stewart KR (2006) Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test. J Stat Comput Simul 2006(76):803–816. https://doi.org/10.1080/10629360500109023

    Article  Google Scholar 

  • Favre A-C, Adlouni SE, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res. https://doi.org/10.1029/2003WR002456

    Article  Google Scholar 

  • Fisher NI, Switzer P (2001) Graphical assessments of dependence: is a picture worth 100 tests? Am Stat 55(3):233–239

    Article  Google Scholar 

  • Gaál L, Szolgay J, Kohnová S, Hlavčová K, Parajka J, Viglione A, Blöschl G (2015) Dependence between flood peaks and volumes: a case study on climate and hydrological controls. Hydrol Sci J 60(6):968–984

    Article  Google Scholar 

  • Genest C, Boies JC (2003) Detecting dependence with Kendall plots. Am Stat 57(4):275–284

    Article  Google Scholar 

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modelling but were afraid to ask. J Hydrol Eng 12:347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann l’Inst Henri Poincare Prob Stat 44:1096–1127

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3):543–552

    Article  Google Scholar 

  • Genest C, Favre AC, Beliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43:W09401. https://doi.org/10.1029/2006WR005275

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–214

    Article  Google Scholar 

  • Goel NK, Seth SM, Chandra S (1998) Multivariate modelling of flood flows. J Hydraul Eng 124(2):146–155

    Article  Google Scholar 

  • Graler B, Berg MJV, Vandenberg S, Petroselli A, Grimaldi S, Baets BD, Verhost NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17:1281–1296

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29:1155–1167

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule of extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J R Stat Soc Ser B Stat Methodol 41:190–195

    Google Scholar 

  • Hassan AAG (2004) Growth, Structural change and regional inequality in Malaysia. Ashgate Publishing Ltd, Malaysia

    Google Scholar 

  • Hosking JRM, Walis JR (1987) Parameter and quantile estimations for the generalized Pareto distributions. Technometrics 29(3):339–349

    Article  Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the general extreme value distribution be the method of probability weighted moments. Technometrics 27(3):251–261

    Article  Google Scholar 

  • Hussain STPR, Ismail H (2013) Flood frequency analysis of Kelantan River Basin, Malaysia. World Appl Sci J 28(12):1989–1995. https://doi.org/10.5829/idosi.wasj.2013.28.12.1559

    Article  Google Scholar 

  • Jamaliah J (2007) Emerging Trends of Urbanization in Malaysia [online]. http://www.statistics.gov.my/eng/images/stories/files/journalDOSM/V104ArticleJamaliah.pdf. Accessed 9 Dec 2018

  • Joe H (1997) Multivariate models and dependence concept. CRC Press, Boca Raton

    Book  Google Scholar 

  • Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis. Part-1: determination of marginal by parametric and non-parametric techniques. J Flood Risk Manag 1:190–200

    Article  Google Scholar 

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part-2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2(1):1–13

    Article  Google Scholar 

  • Katz RW, Parlang MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8):1287–1304

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London, p 1975

    Google Scholar 

  • Kim KD, Heo JH (2002) Comparative study of flood quantiles estimation by nonparametric models. J Hydrol 260:176–193

    Article  Google Scholar 

  • Klein B, Schumann AH, Pahlow M (2011) Copulas-New risk assessment methodology for dam safety, flood risk assessment and management. Springer, pp. 149–185.

  • Klein B, Pahlow M, Hundecha Y, Schumann A (2010) Probability analysis of hydrological loads for the design of flood control system using copulas. J Hydrol Eng ASCE 15:360–369

    Article  Google Scholar 

  • Kojadinovic I, Yan J (2010) Modeling multivariate distributions with continuous margins using the copula R package. J Stat Softw 34(9):1–20

    Article  Google Scholar 

  • Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Stat Sin 21:841–871

    Article  Google Scholar 

  • Kong XM, Huang GH, Fan YR, Li YP (2015) Maximum entropy-Gumbel–Hougaard copula method for simulation of monthly streamflow in Xiangxi river, China. Stoch Environ Res Risk A 29:833–846

    Article  Google Scholar 

  • Krstanovic PF, Singh VP (1987) A multivariate stochastic flood analysis using entropy. In: Singh VP (ed) Hydrologic frequency modelling. Reidel, Dordrecht, pp 515–539

    Chapter  Google Scholar 

  • Lawrence D, Paquet E, Gailhard J, Fleig AK (2014) Stochastic semi-continuous simulations for extreme flood estimations in catchments with combined rainfall-snowmelt flood regimes. Nat Hazard Earth Syst 14:1283–1298

    Article  Google Scholar 

  • Li F (2016) Modeling covariate-contingent correlation and tail-dependence with copulas. https://arxiv.org/pdf/1401.0100.pdf

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modelling extreme hydrologic events. 1. At-site modelling. Water Resour Res 33(4):747–757

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric test against trend. Econometrics 13:245–259

    Article  Google Scholar 

  • Manner H (2007) Estimation and model selection of copulas with an application to exchange rates. Department of Quantitative Economics, Maastricht University, Maastricht

    Google Scholar 

  • Manner H (2010) Modelling assymetric and time-varying dependence. https://cris.maastrichtuniversity.nl/portal/files/667227/guid-ae8195ad-cf0b%20-4744-8bb1-6a44fbe10fe7-ASSET1.0. Accessed 15 May 2019

  • Mathwave Technologies (2004–2017) http://mathwave.com/en/home.html

  • McNeil AJ, Frey R, Embrechts P (2015) Quantitative risk management. Princeton University Press, Princeton. ISBN: 978-0-691-03407-16627-8

  • MMD (2007) Malaysian Meteorological Department (MMD). Report on heavy rainfall that caused floods in Kelantan and Terengganu. Unpublished report. MMD, Kuala Lumpur

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Nadarajah S, Shiau J (2005) Analysis of extreme flood events for the Pachang River, Taiwan. Water Resour Manag 19:363–375

    Article  Google Scholar 

  • Nashwan MS, Ismail T, Ahmed Kamal (2018) Flood susceptibility assessment in Kelantan river basin using copula. Int J Eng Technol 7(2):584–590

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Owen CEB (2008) Parameter estimation for the beta distribution. All Thesis and Disertation, p 1614. https://scholarsarchive.byu.edu/etd/1614

  • Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Rahman HAA, Ibrahim NA, Abdul Hamid AA, Abdul Hamid THT (2018) Effect of 2014 massive flood on well water qualities: a case study on Kelantan River basin, Malaysia. J Water Land Dev 38:127–136. https://doi.org/10.2478/jwld-2018-0049

    Article  Google Scholar 

  • Rakhecha PR, Singh VP (2009) Applied hydrometeorology. Capital Publishing Company, New Delhi

    Book  Google Scholar 

  • Rao AR, Hameed KH (2000) Flood frequency analysis. CRC Press, Boca Raton

    Google Scholar 

  • Razawi S, Vogel R (2018) Pre-whitening of hydroclimatic time series? Implications for inferred change and variability across time scales. J Hydrol 557(2018):109–115

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012a) Bivariate flood frequency analysis of upper Godavari River flows using archimedean copulas. Water Resour Manag. https://doi.org/10.1007/s11269-012-0124-z

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012b) Risk assessments of hydro-climatic variability on ground water levels in the Manjra basin aquifer in India using Archimedean copulas. J Hydrol Eng. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000564

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2013) Probabilistic assessments of flood risks using trivariate copulas. Theor Appl Climatol 111:341–360

    Article  Google Scholar 

  • Renard B, Lang M (2007) Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 30:897–912

    Article  Google Scholar 

  • Requena AI, Flores I, Mediero L, Garrote L (2016) Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model. Stoch Environ Res Risk Assess 30:1363–1378. https://doi.org/10.1007/s00477-015-1138-x

    Article  Google Scholar 

  • Saklar A (1959) Functions de repartition n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Salvadori G (2004) Bivariate return periods via-2 copulas. J R Stat Soc Ser B 1:129–144

    Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40:W12511. https://doi.org/10.1029/2004WR003133

    Article  Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29:827–842

    Article  Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practices. J Hydrol Eng 12:369–380

    Article  Google Scholar 

  • Salvadori G, De Michele C (2010) Multivariate multiparameters extreme value models and return periods: a Copula approach. Water Resour Res. https://doi.org/10.1029/2009WR009040

    Article  Google Scholar 

  • Santhosh D, Srinivas VV (2013) Bivariate frequency analysis of flood using a diffusion kernel density estimators. Water Resour Res 49:8328–8343. https://doi.org/10.1002/2011WR0100777

    Article  Google Scholar 

  • Schmidt T (2007) Coping with Copulas. In: Rank J (ed) Copulas: from theory to application to finance, chap. 1. Risk Books, London, pp 3–34

    Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat Assoc 82(399):918–924

    Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461e464

    Article  Google Scholar 

  • Schweizer B, Wolff EF (1981) On parametric measures of dependence for random variables. Ann Stat 9:879–885

    Article  Google Scholar 

  • Sen Z (1999) Simple risk calculations in dependent hydrological series. Hydrol Sci J 44(6):871–878

    Article  Google Scholar 

  • Serinaldi F (2015) Dismissing return periods! Stoch Environ Res Risk Assess 29(4):1179–1189

    Article  Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed hydrological events. Stoch. Environ. Res. Risk Assess. 17(1–2):42–57

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis, 1st edn. Chapman and Hall, London

    Book  Google Scholar 

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004-08. Illinois State Water Survey, Champaign, Ill. www.sws.uiuc.edu/pubdoc/CR/ISWSCR2004-08.pdf. Accessed 10 Apr 2019

  • Song S, Singh VP (2010) Metaelliptical copulas for drought frequency analysis of periodic hydrologic data. Environ Res Hazard Assess 24(3):425–444

    Article  Google Scholar 

  • Sraj M, Bezak N, Brilly M (2014) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process. https://doi.org/10.1002/hyp.10145

    Article  Google Scholar 

  • Tang Y, Huynh VN, Lawry J (2015) Integrated uncertainty in knowledge modelling and decision making- 4th International Symposium, Proceedings, LNAI 9376, Springer-Verlag, 2015.

  • Tosunoglu F, Kisi O (2016) Joint modelling of annual maximum drought severity and corresponding duration. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.10.018

    Article  Google Scholar 

  • Veronika BM, Halmova D (2014) Joint modelling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava. J Hydrol Hydromech 62(3):186–196

    Article  Google Scholar 

  • Wan I (1996) Urban growth determinants for the state of Kelantano of the state’s policy makers. Penerbitan Akademik Fakulti Kejuruteraan dan Sains Geoinformasi Buletin Ukur 7:176–189

    Google Scholar 

  • Wang C, Ni-Bin Chang N-B, Yeh G-T (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23:1471–1486

    Article  Google Scholar 

  • Wooldridge S, Kalma J, Kuczera G (2001) Parameterisation of a simple semi-distributed model for assessing the impact of land-use on hydrologic response. J Hydrol 254:16–32

    Article  Google Scholar 

  • Xu Y, Huang G, Fan Y (2015) Multivariate flood risk analysis for Wei River. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-015-1196-0

    Article  Google Scholar 

  • Yue S (1999) Applying the bivariate normal distribution to flood frequency analysis. Water Int 24(3):248–252

    Article  Google Scholar 

  • Yue S (2000) The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Process 14:2575–2588

    Article  Google Scholar 

  • Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15:1033–1045

    Article  Google Scholar 

  • Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological applications. Hydrol Process 16:2881–2898

    Article  Google Scholar 

  • Yue S, Wang CY (2004) A comparison of two bivariate extreme value distribution. Stoch Environ Res Risk A 18:61–66

    Article  Google Scholar 

  • Yue S, Ouarda TMBJ, Bobee B, Legendre P, Bruneau P (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226(1–2):88–100

    Article  Google Scholar 

  • Zhang L (2005) Multivariate hydrological frequency analysis and risk mapping. Doctoral dissertation, Beijing Normal University

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using copula method. J Hydrol Eng 11(2):150

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel-Hougaard copula. J Hydrol Eng 12(4):431–439

    Article  Google Scholar 

  • Zhang R, Xi Chen, Cheng Q, Zhang Z, Shi P (2016) Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China. Stoch Environ Res Risk Assess 30:1641–1657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Latif.

Ethics declarations

Conflict of interest

This manuscript exhibited no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, S., Mustafa, F. Bivariate flood distribution analysis under parametric copula framework: a case study for Kelantan River basin in Malaysia. Acta Geophys. 68, 821–859 (2020). https://doi.org/10.1007/s11600-020-00435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00435-y

Keywords

Navigation