Skip to main content

Advertisement

Log in

Bacterial and Archaeal Communities within an Ultraoligotrophic, High-altitude Lake in the Pre-Himalayas of the Qinghai-Tibet Plateau

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Puma Yumco Lake (PYL) is an ultraoligotrophic freshwater lake that sits an altitude of 5030 m within the Qinghai-Tibet Plateau of China. The bacterial and archaeal diversity of the lake remains poorly understood, despite their potential to inform on biogeochemical cycling and environment-microbial associations in these unique environments. Here, the bacterial and archaeal communities of PYL were investigated using high-throughput sequencing analysis of community 16S rRNA gene sequences. Further, the relationships among dominant taxa and environmental factors were comprehensively evaluated. Bacterial diversity comprised 31 phyla and 371 genera (10,645 operational taxonomic units [OTUs], Shannon index values of 5.21–6.16) and was significantly higher than that of Archaea (five phyla and 24 genera comprising 1141 OTUs and Shannon index values of 1.18–3.28). The bacterial communities were dominated by Proteobacteria (48.42–59.97% relative abundances), followed by Bacteroidetes (12.5–32.51%), Acidobacteria (2.07–11.56%), Firmicutes (0.65–6.32%), Planctomycetes (0.99–3.56%), Gemmatimonadetes (0.38–3.57%), Actinobacteria (1.67–3.52%), Verrucomicrobia (0.87–2.01%), and Chloroflexi (0.5–1.17%). In addition, archaeal communities were dominated by Thaumarchaeota (33.22–93.00%), followed by Euryarchaeota (2.89–35.47%), Woesearchaeota (0.99–31.04%), and Pacearchaeota (0.01–1.14%). The most abundant bacterial genus was Rhodoferax (5.73–26.62%) and the most abundant archaeal genus was the ammonia-oxidizing Nitrososphaera (29.18–91.46%). These results suggest that the Rhodoferax and Nitrososphaera are likely to participate in biogeochemical cycles in these environments through photoheterotrophy and nitrification, respectively. Taken together, these results provide valuable data for better understanding microbial interactions with each other and with these unique environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hayden CJ, Beman JM (2014) High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA. PLoS ONE 9:e111560. https://doi.org/10.1371/journal.pone.0111560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Casamayor EO (2017) Towards a microbial conservation perspective in high mountain lakes. In: Catalan J, Ninot J, Aniz M (eds) High mountain conservation in a changing world. Advances in global change research vol 62. Springer, Cham, pp 157–180. https://doi.org/10.1007/978-3-319-55982-7_7

    Chapter  Google Scholar 

  3. Cabrol NA, Mckay CP, Grin EA, Kiss KT, Ács E, Tóth B, Grigorszky I et al (2009) Signatures of habitats and life in earth’s high-altitude lakes: clues to Noachian aqueous environments on mars. In: Chapman MG (ed) The geology of mars: evidence from earth-based analogs. Cambridge University Press, UK, pp 350–370. https://doi.org/10.1017/CBO9780511536014

    Chapter  Google Scholar 

  4. Yang Y, Shan J, Zhang J, Zhang X, Xie S, Liu Y (2014) Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Appl Microbiol Biotechnol 98:10197–10209. https://doi.org/10.1007/s00253-014-5942-x

    Article  CAS  PubMed  Google Scholar 

  5. Yun J, Ju Y, Deng Y, Zhang H (2014) Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. Microb Ecol 68:360–369. https://doi.org/10.1007/s00248-014-0415-4

    Article  PubMed  Google Scholar 

  6. Aanderud ZT, Vert JC, Lennon JT, Lennon JT, Magnusson TW, Breakwell DP, Harker AR (2016) Bacterial dormancy is more prevalent in freshwater than hypersaline lakes. Front Microbiol 7:853. https://doi.org/10.3389/fmicb.2016.00853

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aszalós JM, Krett G, Anda D, Márialigeti K, Nagy B, Borsodi AK (2016) Diversity of extremophilic bacteria in the sediment of high-altitude lakes located in the mountain desert of Ojos del Salado volcano, dry-Andes. Extremophiles 20:603–620. https://doi.org/10.1007/s00792-016-0849-3

    Article  PubMed  Google Scholar 

  8. Hu A, Yao T, Jiao N, Liu Y, Yang Z, Liu X (2010) Community structures of ammonia-oxidising archaea and bacteria in high-altitude lakes on the Tibetan Plateau. Freshwater Biol 55:2375–2390. https://doi.org/10.1111/j.1365-2427.2010.02454.x

    Article  CAS  Google Scholar 

  9. Dorador C, Vila I, Witzel KP, Imhoff JF (2013) Bacterial and archaeal diversity in high altitude wetlands of the Chilean Altiplano. Fundam Appl Limnol 182:135–159. https://doi.org/10.1127/1863-9135/2013/0393

    Article  CAS  Google Scholar 

  10. Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu Y (2015) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 99:3291–3302. https://doi.org/10.1007/s00253-014-6262-x

    Article  CAS  PubMed  Google Scholar 

  11. Deng Y, Liu Y, Dumont M, Conrad R, Liu Y (2017) Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microb Ecol 73:101–110. https://doi.org/10.1007/s00248-016-0879-5

    Article  PubMed  Google Scholar 

  12. Zheng M, Liu X (2009) Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau, China. Aquat Geochem 15:293–320. https://doi.org/10.1007/s10498-008-9055-y

    Article  CAS  Google Scholar 

  13. Zhe M, Zhang X, Wang B, Sun R, Zheng D (2017) Hydrochemical regime and its mechanism in Yamzhog Yumco Basin, South Tibet. J Geogr Sci 27:1111–1122. https://doi.org/10.1007/s11442-017-1425-1

    Article  Google Scholar 

  14. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Yao T, Jiao N, Zhu LP, Hu AY, Liu XB, Gao J, Chen ZQ (2013) Salinity impact on bacterial community composition in five high-altitude lakes from the Tibetan Plateau, western China. Geomicrob J 30:462–469. https://doi.org/10.1080/01490451.2012.710709

    Article  CAS  Google Scholar 

  16. Günther F, Thiele A, Gleixner G, Xu B, Yao T, Stefan S (2014) Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: implications for GDGT-based proxies in saline high mountain lakes. Org Geochem 67:19–30. https://doi.org/10.1016/j.orggeochem.2013.11.014

    Article  CAS  Google Scholar 

  17. Liu Y, Priscu JC, Xiong J, Conrad R, Hou J (2016) Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol 92:fiw033. https://doi.org/10.1093/femsec/fiw033

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Ma L, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan lakes. Sci Rep 6:25078. https://doi.org/10.1038/srep25078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhong ZP, Liu Y, Miao LL, Wang F, Liu ZP (2016) Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau. Appl Environ Microbiol 82:1846–1858. https://doi.org/10.1128/AEM.03332-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan Plateau. Environ Microbiol 9:2603–2621. https://doi.org/10.1111/j.1462-2920.2007.01377.x

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H, Dong H, Deng S, Yu B, Huang Q, Wu Q (2009) Response of archaeal community structure to environmental changes in lakes on the Tibetan Plateau, northwestern China. Geomicrob J 26:289–297. https://doi.org/10.1080/01490450902892662

    Article  CAS  Google Scholar 

  22. Liu X, Yao T, Kang S, Jiao N, Zeng Y, Liu Y (2010) Bacterial community of the largest oligosaline lake, Namco on the Tibetan Plateau. Geomicrob J 27:669–682. https://doi.org/10.1080/01490450903528000

    Article  CAS  Google Scholar 

  23. Yang J, Jiang H, Dong H, Wang H, Wu G, Hou W, Liu W, Zhang C, Sun Y, Lai Z (2013) amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau. China Front Microbiol 4:329. https://doi.org/10.3389/fmicb.2013.00329

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Priscu JC, Yao T, Vick-Majors TJ, Michaud AB, Jiao N, Hou J, Tian L, Hu A, Chen ZQ (2014) A comparison of pelagic, littoral, and riverine bacterial assemblages in lake Bangongco, Tibetan Plateau. FEMS Microbiol Ecol 89:211–221. https://doi.org/10.1111/1574-6941.12278

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Hou W, Dong H, Wang S, Jiang H, Wu G, Yang J, Li G (2015) Distribution and diversity of Cyanobacteria and eukaryotic algae in Qinghai-Tibetan lakes. Geomicrob J 33:860–869. https://doi.org/10.1080/01490451.2015.1120368

    Article  CAS  Google Scholar 

  26. Han R, Zhang X, Liu J, Long Q, Chen L, Liu D, Zhu D (2017) Microbial community structure and diversity within hypersaline Keke salt lake environments. Can J Microbiol 63:895–908. https://doi.org/10.1139/cjm-2016-0773

    Article  CAS  PubMed  Google Scholar 

  27. Liu K, Liu Y, Jiao N, Zhu L, Wang J, Hu A, Liu X (2016) Vertical variation of bacterial community in Nam Co, a large stratified lake in central Tibetan Plateau. Antonie Van Leeuwenhoek 109:1323–1335. https://doi.org/10.1007/s10482-016-0731-4

    Article  CAS  PubMed  Google Scholar 

  28. Mitamura O, Seike Y, Kondo K, Goto N, Anbutsu K, Akatsuka T, Kihira M, Tsering TQ, Nishimura M (2003) First investigation of ultraoligotrophic alpine lake Puma Yum Co in the pre-Himalayas, China. Limnology 4:167–175. https://doi.org/10.1007/s10201-003-0101-6

    Article  CAS  Google Scholar 

  29. Murakami T, Terai H, Yoshiyama Y, Tezuka T, Zhu L, Matsunaka T, Nishimura M (2007) The second investigation of lake Puma Yum Co located in the southern Tibetan Plateau, China. Limnol 8:331–335. https://doi.org/10.1007/s10201-007-0208-2

    Article  CAS  Google Scholar 

  30. Liu Y, Yao T, Zhu L, Jiao NZ, Liu XB, Zeng YH, Jiang HC (2009) Bacterial diversity of freshwater alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrob J 26:131–145. https://doi.org/10.1080/01490450802660201

    Article  CAS  Google Scholar 

  31. Watanabe T, Matsunaka T, Nakamura T, Nishimura M, Izutsu Y, Minami M et al (2010) Last glacial-holocene geochronology of sediment cores from a high-altitude Tibetan lake based on AMS 14C dating of plant fossils: implications for paleoenvironmental reconstructions. Chem Geol 277:21–29. https://doi.org/10.1016/j.chemgeo.2010.07.004

    Article  CAS  Google Scholar 

  32. Deng Y, Zhang Y, Gao Y, Li D, Liu R, Liu M, Zhang H, Hu B, Yu T, Yang M (2012) Microbial community compositional analysis for series reactors treating high level antibiotic wastewater. Environ Sci Technol 46:795–801. https://doi.org/10.1021/es2025998

    Article  CAS  PubMed  Google Scholar 

  33. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  35. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N (2015) Compact graphical representation of phylogenetic data and metadata with GraPhlAn. Peer J 3:e1029. https://doi.org/10.7717/peerj.1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Letunic I, Bork P (2015) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–245. https://doi.org/10.1093/nar/gkw290

    Article  CAS  Google Scholar 

  41. Newton RJ, Jones SE, Eiler A, Mcmahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. https://doi.org/10.1128/MMBR.00028-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Auguet JC, Triadó-Margarit X, Nomokonova N, Camarero L, Casamayor EO (2012) Vertical segregation and phylogenetic characterization of ammonia-oxidizing archaea in a deep oligotrophic lake. ISME J 6:1786–1797. https://doi.org/10.1038/ismej.2012.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao H, Auguet JC, Gu JD (2013) Global ecological pattern of ammonia-oxidizing archaea. PLoS ONE 8:e52853. https://doi.org/10.1371/journal.pone.0052853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Zhang J, Zhang X, Xie S (2014) Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland. Appl Microbiol Biotechnol 98:5697–5707. https://doi.org/10.1007/s00253-014-5651-5

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Zhang J, Zhao L, Li Y, Dai Y, Xie S (2015) Distribution of sediment ammonia-oxidizing microorganisms in plateau freshwater lakes. Appl Microbiol Biotechnol 99:4435–4444. https://doi.org/10.1007/s00253-014-6341-z

    Article  CAS  PubMed  Google Scholar 

  46. Hiraishi A, Imhoff JF (2015) Rhodoferax. In: Whitman WB, DeVos P, Dedysh S, et al. (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, pp 1–11. https://doi.org/10.1002/9781118960608.gbm00951

    Chapter  Google Scholar 

  47. Salka I, Cuperová Z, Mašín M, Koblížek M, Grossart HP (2011) Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol 13:2865–2875. https://doi.org/10.1111/j.1462-2920.2011.02562.x

    Article  CAS  PubMed  Google Scholar 

  48. Chong SC, Boone DR (2015) Methanoculleus. In: Whitman WB, DeVos P, Dedysh S, et al. (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, Hoboken, pp 1–5. https://doi.org/10.1002/9781118960608.gbm00505

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (31760034, 31860030, and 21967018), the Key Research Foundation of Development and Transformation of Qinghai Province (2019SF121), the Applied Basic Research Program of Qinghai Province (2018ZJ778, 2018ZJ930Q, and 2020ZJ767), and the Team’s Research Program of Microbial Resources in Salt-lakes of Qinghai-Tibetan Plateau (2018KYT1). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derui Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Han, R., Long, Q. et al. Bacterial and Archaeal Communities within an Ultraoligotrophic, High-altitude Lake in the Pre-Himalayas of the Qinghai-Tibet Plateau. Indian J Microbiol 60, 363–373 (2020). https://doi.org/10.1007/s12088-020-00881-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00881-8

Keywords

Navigation