Skip to main content

Advertisement

Log in

Biomass, carbon and nitrogen in single tree components of grey poplar (Populus × canescens) in an uncultivated habitat in Van, Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The biomass, carbon and nitrogen storage in the single tree components (foliage, branch, crown, bark, stem and total aboveground) of the grey poplar (Populus × canescens) in its distribution in Eastern Anatolia (Van, Turkey) were determined and modelled. The biomass, carbon and nitrogen storages were not estimated at a stand level but were based on single trees. Regression models based on the tree diameter at breast height (DBH) and total tree height (H) were developed to estimate the biomass, carbon (C) storage and nitrogen (N) storage of the different tree components of a total of 28 grey poplar trees. The two main regression models in the power function were developed based only on the DBH (Model 1) and the combination of the DBH and height (D2H) (Model 2). All regression models, except for those of the foliage components, developed to estimate the biomass and C and N storages of the tree components were found to be statistically significant (p < 0.001). The partitioning of the total aboveground biomass in the bark, foliage, branches and stems was 0.7, 9, 17 and 73%, respectively. The average C concentrations of the tree components ranged from 48 (foliage) to 50% (bark, branch and stem), while the N concentrations ranged from 0.35 (stem) to 1.32% (foliage). Higher biomass and lower nitrogen concentrations of foliage compared with cultivated poplars were likely related to the natural site conditions, low soil nitrogen and/or characteristics of single tree growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alaeddinoğlu, F., Avşin, N., & Yılmaz, E. (2014). Van Gölü Güneydoğusunun Jeomorfolojik özellikleri ve ekoturizm. Ankara Üniversitesi, Türkiye Coğrafyası Araştırma ve uygulama Merkezi, VIII. Coğrafya Sempozyumu, 23-24 Ekim 2014, Ankara. Bildiriler Kitabı, 8, 245–255 (in Turkish).

    Google Scholar 

  • André, F., Jonard, M., & Ponette, Q. (2010). Biomass and nutrient content of Sessile Oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in Southern Belgium. Science of the Total Environment, 408, 2285–2294.

    Google Scholar 

  • Balbao-Murias, M. A., Rojo, A., Álvarez, J. G., & Merino, A. (2006). Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Annals of Forest Science, 63, 557–565.

    Google Scholar 

  • Benetka, V., Novotná, K., & Štochlová, P. (2012). Wild populations as a source of germplasm for black poplar (Populus nigra L.) breeding programmes. Tree Genetics and Genomes, 8(5), 1073–1084.

    Google Scholar 

  • Berhongaray, G., & Ceulemans, R. (2015). Neglected carbon pools and fluxes in the soil balance of short-rotation woody biomass crops. Biomass and Bioenergy, 73, 62–66.

    CAS  Google Scholar 

  • Caliskan, S., & Makineci, E. (2014). Variations in carbon and nitrogen ratios and their effects on seed germination in Cupressus sempervirens populations. Scandinavian Journal of Forest Research, 29(2), 162–169.

    Google Scholar 

  • Caliskan, S., & Makineci, E. (2020). Carbon and nitrogen of seed and some germination parameters at different test temperatures in Anatolian black pine populations. Journal of Sustainable Forestry, 39(1), 23–34.

    Google Scholar 

  • ÇEM. (2016). Türkiye Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü. Van Orman İşletme Müdürlüğü: Van İli İpekyolu İlçesi Erek Dağı Ağaçlandırma Projesi (in Turkish).

    Google Scholar 

  • Çiftçi, Y., Isik, M. A., Alkevli, T., & Yeşilova, Ç. (2008). Van Gölü havzasının çevre jeolojisi. Jeoloji Mühendisliği Dergisi, 32(2), 45–77 (in Turkish).

    Google Scholar 

  • Coleman, M. D., Friend, A. L., & Kern, C. C. (2004). Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation. Tree Physiology, 24(12), 1347–1357.

    CAS  Google Scholar 

  • Czapowskyj, M. M., & Safford, L. O. (1993). Site preparation, fertilization, and 10-year yields of hybrid poplar on a clearcut forest site in eastern, USA. New Forests, 7, 331–334.

    Google Scholar 

  • Di Matteo, G., Sperandio, G. G., & Verani, S. (2012). Field performance of poplar for bioenergy in southern Europe after two coppicing rotations: Effects of clone and planting density. IForest, 5, 224–229.

    Google Scholar 

  • Dluzniewska, P., Gessler, A., Dietrich, H., Schnitzler, J. P., Teuber, M., & Rennenberg, H. (2007). Nitrogen uptake and metabolism in Populus×canescens as affected by salinity. New Phytologist, 173(2), 279–293.

    CAS  Google Scholar 

  • Fang, S., Xu, X., Lu, S., & Tang, L. (1999). Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy, 17, 415–425.

    Google Scholar 

  • Fang, S., Xue, J., & Tang, L. (2007). Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management, 85, 672–679.

    CAS  Google Scholar 

  • Fang, S., Li, H., Sun, Q., & Chen, L. (2010). Biomass production and carbon stocks in poplar-crop intercropping systems: A case study in northwestern Jiangsu, China. Agroforestry Systems, 79(2), 213–222.

    Google Scholar 

  • Fortier, J., Gagnon, D., Truax, B., & Lambert, F. (2010a). Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass and Bioenergy, 34, 1028–1040.

    Google Scholar 

  • Fortier, J., Gagnon, D., Truax, B., & Lambert, F. (2010b). Nutrient accumulation and carbon sequestration in 6-year-old hybrid poplars in multiclonal agricultural riparian buffer strips. Agriculture, Ecosystems and Environment, 137(3–4), 276–287.

    CAS  Google Scholar 

  • Fortier, J., Truax, B., Gagnon, D., & Lambert, F. (2015). Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land. Journal of Environmental Management, 154, 333–345.

    CAS  Google Scholar 

  • Jamnická, G., Petrášová, V., Petráš, R., Mecko, J., & Oszlányi, J. (2014). Energy production in poplar clones and their energy use efficiency. IForest, 7, 150–155.

    Google Scholar 

  • Jansons, A., Rieksts-Riekstiņš, J., Senhofa, S., Katrevics, J., Lazdina, D., & Sisenis, L. (2017). Above-ground biomass equations of Populus hybrids in Latvia. Baltic Forestry, 23(2), 507–514.

    Google Scholar 

  • Jha, K. K. (2018). Biomass production and carbon balance in two hybrid poplar (Populus euramericana) plantations raised with and without agriculture in southern France. Journal of Forestry Research, 29(6), 1689–1701.

    Google Scholar 

  • Johansson, T. (2002). Increment and biomass in 26-to 91-year-old European aspen and some practical implications. Biomass and Bioenergy, 23(4), 245–255.

    Google Scholar 

  • Johansson, T. (2013). Biomass production of hybrid aspen growing on former farm land in Sweden. Journal of Forestry Research, 24(2), 237–246.

    CAS  Google Scholar 

  • Johansson, T., & Karačić, A. (2011). Increment and biomass in hybrid poplar and some practical implications. Biomass and Bioenergy, 35, 1925–1934.

    Google Scholar 

  • Kalelioğlu, E. (1991). Van Ovasının iklim özellikleri. DTCF Dergisi, 35(2), 155–166 (in Turkish).

    Google Scholar 

  • Karakaş, A. (2015). 1 Yaşlı bazı kavak klon yapraklarındaki besin maddelerinin tespiti üzerine bir çalışma. Ormancılık Araştırma Dergisi, 1(2 A), 7–14 (in Turkish).

    Google Scholar 

  • Lai, J., Yang, B., Lin, D., Kerkhoff, A. J., & Ma, K. (2013). The allometry of coarse root biomass: Log-transformed linear regression or nonlinear regression? PLoS One, 8(10), e77007.

    CAS  Google Scholar 

  • Lamlom, S. H., & Savidge, R. A. (2003). A reassessment of C content in wood: Variation within and between 41 North American species. Biomass and Bioenergy, 25, 381–388.

    CAS  Google Scholar 

  • Liu, B., Rennenberg, H., & Kreuzwieser, J. (2015). Hypoxia affects nitrogen uptake and distribution in young poplar (Populus × canescens) trees. PLoS One, 10(8), e0136579.

    Google Scholar 

  • Makineci, E., Yılmaz, E., Kumbaşlı, M., Yılmaz, H., Çalışkan, S., Sevgi, O., Keten, A., Beşkardeş, V., Zengin, H., & Özdemir, E. (2011). Kuzey Trakya koruya tahvil meşe ekosistemlerinde sağlık durumu, biyokütle, karbon depolama ve faunistik özelliklerin belirlenmesi (p. 107O750). Ankara, Türkiye: TÜBİTAK Projesi, TUBİTAK-TOVAG (in Turkish).

    Google Scholar 

  • Masclaux-Daubresse, C., & Chardon, F. (2011). Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. Journal of Experimental Botany, 62, 2131–2142.

    CAS  Google Scholar 

  • Nabuurs, G. J., Paivinen, R., Sikkema, R., & Mohren, G. M. J. (1997). The role of European forests in the global C cycle-A review. Biomass and Bioenergy, 13(6), 345–358.

    CAS  Google Scholar 

  • Naidu, S. L., DeLucia, E. H., & Thomas, R. B. (1998). Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine. Canadian Journal of Forest Research, 28, 1116–1124.

    Google Scholar 

  • Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427–434.

    Google Scholar 

  • Netzer, F., Mueller, C. W., Scheerer, U., Grüner, J., Kögel-Knabner, I., Herschbach, C., & Rennenberg, H. (2017). Phosphorus nutrition of Populus × canescens reflects adaptation to high P-availability in the soil. Tree Physiology, 38(1), 6–24.

    Google Scholar 

  • Niemczyk, M., Kaliszewski, A., Jewiarz, M., Wróbel, M., & Mudryk, K. (2018). Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass and Bioenergy, 111, 46–51.

    Google Scholar 

  • Ntshidi, Z., Gush, M. B., Dzikiti, S., & Le Maitre, D. C. (2018). Characterising the water use and hydraulic properties of riparian tree invasions: A case study of Populus canescens in South Africa. Water SA, 44(2), 328–337.

    Google Scholar 

  • Oliveira, N., Rodríguez-Soalleiro, R., Pérez-Cruzado, C., Cañellas, I., Sixto, H., & Ceulemans, R. (2018). Above- and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. Forest Ecology and Management, 428, 57–65.

    Google Scholar 

  • Onyekwelu, J. C. (2004). Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in south-western Nigeria. Biomass and Bioenergy, 26(1), 39–46.

    Google Scholar 

  • Özcan, Y. (2018). Van yöresi boz kavak (Populus x canescens) tek ağaç bitkisel kütlesinin belirlenmesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü: Yüksek Lisans Tezi (in Turkish).

    Google Scholar 

  • Pregitzer, K. S., Dickmann, D. I., Hendrick, R., & Nguyen, P. V. (1990). Whole-tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiology, 7, 79–93.

    CAS  Google Scholar 

  • Rapp, M., Regina, I. S., Rico, M., & Gallego, H. A. (1999). Biomass, nutrient content, litter fall and nutrient return to the soil in Mediterranean oak forests. Forest Ecology and Management, 119, 39–49.

    Google Scholar 

  • Raslavičius, R., Kučinskas, V., & Jasinskas, A. (2013). The prospects of energy forestry and agroresidues in the Lithuania’s domestic energy supply. Renewable and Sustainable Energy Reviews, 22, 419–431.

    Google Scholar 

  • Rivzi, R. H., Dhyani, S. K., Yadav, R. S., & Singh, R. (2011). Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Current Science, 100(5), 736–742.

    Google Scholar 

  • Rytter, R. M. (2012). The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass and Bioenergy, 36, 86–95.

    CAS  Google Scholar 

  • Sarıbaş, M. (1989). Türkiye’nin Euro-Siberien (Euxine) bölgesinde doğal olarak yetişen kavakların morfolojik (dış morfolojik, iç morfolojik ve palinolojik) özellikleri üzerine araştırmalar. Kavak ve Hızlı Gelişen Tür Orman Ağaçları Araştırma Enstitüsü Teknik Bülteni, 148, 1–152.

  • Scarascia-Mugnozza, G. E., Ceulemans, R., Heilman, P. E., Isebrands, J. G., Settler, R. F., & Hinckley, T. M. (1997). Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Canadian Journal of Forest Research, 27, 285–294.

    Google Scholar 

  • Sixto, H., Gil, P., Ciria, P., Camps, F., Sánchez, M., Canellas, I., & Voltas, J. (2013). Performance of hybrid poplar clones in short rotation coppice in Mediterranean environments: Analysis of genotypic stability. GCB Bioenergy, 6, 661–671.

    Google Scholar 

  • Sohrabi, H., Parsapour, M. K., Soltani, A., & Iranmanesh, Y. (2015). Early differentiation in biomass production and carbon sequestration of white poplar and its two hybrids in Central Iran. Journal of Forestry Research, 26(1), 65–69.

    CAS  Google Scholar 

  • Stanton, B. J., Serapiglia, M. J., & Smart, L. B. (2014). The domestication and conservation of Populus and Salix genetic resources. In J. G. Isebrands & J. Richardson (Eds.), Poplars and willows: Trees for society and the environment (pp. 124–199). Wallingford, UK: CABI.

    Google Scholar 

  • Stanturf, J. A., Oosten, C. V., Netzer, D. A., Coleman, M. D., & Portwood, C. J. (2001). Ecology and silviculture of poplar plantations. In D. I. Dickmann, J. G. Isebrands, J. E. Eckenwalder, & J. Richardson (Eds.), Poplar culture in North America (pp. 153–206). Ottawa, ON, Canada: NRC Research Press.

    Google Scholar 

  • Taeroe, A., Nord-Larsen, T., Stupak, I., & Raulund-Rasmussen, K. (2015). Allometric biomass, biomass expansion factor and wood density models for OP42 hybrid poplar in southern Scandinavia. Bioenergy Research, 8, 1332–1343.

    CAS  Google Scholar 

  • Tunçtaner, K. (2008). Melez kavak gen ıslahı ve seleksiyonu Kavak ve Hızlı Gelişen Orman Ağaçları Araştırma Enstitüsü tarafından yürütülmekte olan ülkemizde doğal olarak yayılış gösteren kavak ve söğüt türleri ile ilgili gen kaynaklarının tespiti, korunması ve değerlendirilmesi. İzmit: Kavak ve Hızlı Gelişen Orman Ağaçları Araştırma Enstitüsü (in Turkish).

    Google Scholar 

  • Wang, J. R., Letchford, T., Comeau, P., & Kimmins, J. P. (2000). Above- and below-ground biomass and nutrient distribution of a paper birch and subalpine fir mixed-species stand in the Sub-Boreal Spruce zone of British Columbia. Forest Ecology and Management, 130, 17–26.

    Google Scholar 

  • Whitesell, C. D., Miyasaka, S. C., Strand, R. F., Schubert, T. H., & McDuffie, K. E. (1988). Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii. Forest Service research note (no. PB-90-115213/XAB; FSRN-PSW--402). Berkeley, CA (USA): Forest Service Pacific Southwest Forest and Range Experiment Station.

    Google Scholar 

  • Zemleduch-Barylska, A., & Lorenc-Plucińska, G. (2015). Populus × canescens grown on Cr-rich tannery waste: Comparison of leaf and root biochemical and proteomic responses. Plant Physiology and Biochemistry, 90, 1–13.

    CAS  Google Scholar 

  • Zhao, D., Kane, M., Markewitz, D., Teskey, R., & Clutter, M. (2015). Additive tree biomass equations for midrotation loblolly pine plantations. Forest Science, 61(4), 613–623.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers and editor for their many insightful comments and suggestions. This study contains data from the Master of Science thesis entitled “Single tree biomass estimation of the grey poplar (Populus x canescens) in Van region” prepared by Yüksel Özcan under the supervision of Dr. Ender Makineci in the Science Institute of Istanbul University. The authors also thank Dr. Hatice Yilmaz from Istanbul University-Cerrahpasa, Faculty of Forestry, Vocational School, for the determination of grey poplar species in the study, and Dr. Serdar Akburak for his help with CN analyses in laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Makineci.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, Y., Makineci, E. & Özdemir, E. Biomass, carbon and nitrogen in single tree components of grey poplar (Populus × canescens) in an uncultivated habitat in Van, Turkey. Environ Monit Assess 192, 363 (2020). https://doi.org/10.1007/s10661-020-08263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08263-9

Keywords

Navigation