Skip to main content
Log in

Iron(0)-Catalyzed Hydrothermal Liquefaction of Switchgrass: the Effects of Co-Catalysts and Reductive Conditions

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The effects of a series of co-catalysts: iron(III)chloride, zinc chloride, sodium borate, acetic acid, oxalic acid, 10% Pd-C, sodium carbonate, and Raney-Ni as well as H2 at 200 psi reductive conditions were studied on the iron(0)-catalyzed hydrothermal liquefaction of switchgrass at 210 °C. The addition 10% (w/w) iron(III)chloride as a co-catalyst in 60% aq. ethanol, without a hydrogen atmosphere enhanced the liquefaction yield from 55.7 ± 1.5 to 67.6 ± 2.5%. The use of Pd/C (5% w/w) and Raney-Ni (5% w/w) as co-catalysts could also enhance the liquefaction yields to 67.0 ± 3.0 and 72.3 ± 1.8% respectively, in reactions carried out under hydrogen atmosphere at 200 psi, in H2O, 210 °C, 24 h. GC-MS analysis of the liquefaction products revealed that C5-C10 range partially oxygenated products are formed and the composition of the liquefaction product depends on the co-catalyst used. The thermogravimetric and FT-IR analysis of liquefaction residues indicated that polysaccharide fraction is mainly liquefied in these iron(0)-catalyzed liquefactions of switchgrass at 210 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36(12):3541–3549. https://doi.org/10.1016/j.renene.2011.04.031

    Article  CAS  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513. https://doi.org/10.1039/C004654J

    Article  CAS  Google Scholar 

  3. Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  4. Höök M, Aleklett K (2010) A review on coal-to-liquid fuels and its coal consumption. Int J Energy Res 34(10):848–864. https://doi.org/10.1002/er.1596

    Article  CAS  Google Scholar 

  5. Mochida I, Okuma O, Yoon S-H (2013) Chemicals from direct coal liquefaction. Chem Rev 114(3):1637–1672. https://doi.org/10.1021/cr4002885

    Article  CAS  Google Scholar 

  6. Ail SS, Dasappa S (2016) Biomass to liquid transportation fuel via Fischer Tropsch synthesis–technology review and current scenario. Renew Sust Energ Rev 58:267–286. https://doi.org/10.1016/j.rser.2015.12.143

    Article  CAS  Google Scholar 

  7. Shui H, Cai Z, Xu C (2010) Recent advances in direct coal liquefaction. Energies 3(2):155–170. https://doi.org/10.3390/en3020155

    Article  Google Scholar 

  8. Speight J (2008) Synthetic fuels handbook: properties, process and performance. McGraw Hill, NewYork

    Google Scholar 

  9. Shi Z, Jin L, Zhou Y, Li Y, Hu H (2017) Effect of hydrothermal treatment on structure and liquefaction behavior of Baiyinhua coal. Fuel Process Technol 167:648–654. https://doi.org/10.1016/j.fuproc.2017.08.015

    Article  CAS  Google Scholar 

  10. Pedersen TH, Grigoras I, Hoffmann J, Toor SS, Daraban IM, Jensen CU, Iversen S, Madsen RB, Glasius M, Arturi KR (2016) Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Appl Energy 162:1034–1041. https://doi.org/10.1016/j.apenergy.2015.10.165

    Article  CAS  Google Scholar 

  11. Zhang Y (2010) Hydrothermal liquefaction to convert biomass into crude oil. Biofuels from agricultural wastes and byproducts. Wiley, NewYork

    Google Scholar 

  12. Kruse A, Funke A, Titirici M-M (2013) Hydrothermal conversion of biomass to fuels and energetic materials. Curr Opin Chem Biol 17(3):515–521. https://doi.org/10.1016/j.cbpa.2013.05.004

    Article  CAS  Google Scholar 

  13. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31(5):667–677. https://doi.org/10.1002/ceat.200800077

    Article  CAS  Google Scholar 

  14. Gollakota A, Kishore N, Gu S (2017) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1878–1892. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  15. Lu Z, Zheng H, Fan L, Liao Y, Ding B, Huang B (2013) Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst. Bioresour Technol 142:579–584. https://doi.org/10.1016/j.biortech.2013.05.091

    Article  CAS  Google Scholar 

  16. Chen H, Zhang Y, Xie S (2012) Selective liquefaction of wheat straw in phenol and its fractionation. Appl Biochem Biotechnol 167(2):250–258. https://doi.org/10.1007/s12010-012-9675-y

    Article  CAS  Google Scholar 

  17. Yamada T, Ono H, Ohara S, Yamaguchi A (1996) Characterization of the products resulting from direct liquefaction of cellulose I. Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water. Mokuzai Gakkaishi 42(11):1098–1104 http://pascal-francis.inist.fr/vibad/index

    CAS  Google Scholar 

  18. Yamada T, Ono H (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour Technol 70(1):61–67. https://doi.org/10.1016/S0960-8524(99)00008-5

    Article  CAS  Google Scholar 

  19. Wang W, Yu Q, Meng H, Han W, Li J, Zhang J (2018) Catalytic liquefaction of municipal sewage sludge over transition metal catalysts in ethanol-water co-solvent. Bioresour Technol 249:361–367. https://doi.org/10.1016/j.biortech.2017.09.205

    Article  CAS  Google Scholar 

  20. Lu J, Li X, Yang R, Zhao J, Liu Y, Qu Y (2014) Liquefaction of fermentation residue of reed- and corn stover-pretreated with liquid hot water in the presence of ethanol with aluminum chloride as the catalyst. Chem Eng J 247:142–151. https://doi.org/10.1016/j.cej.2014.02.094

    Article  CAS  Google Scholar 

  21. Nazari L, Yuan Z, Souzanchi S, Ray MB, Xu C (2015) Hydrothermal liquefaction of woody biomass in hot-compressed water: catalyst screening and comprehensive characterization of bio-crude oils. Fuel 162:74–83. https://doi.org/10.1016/j.fuel.2015.08.055

    Article  CAS  Google Scholar 

  22. Hwang H, Lee JH, Choi I-G, Choi JW (2019) Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Environ Technol 40(13):1657–1667. https://doi.org/10.1080/09593330.2018.1427799

    Article  CAS  Google Scholar 

  23. Alper K, Tekin K, Karagoz S (2019) Hydrothermal liquefaction of lignocellulosic biomass using potassium fluoride doped alumina. Energy Fuel 33:3248–3256. https://doi.org/10.1021/acs.energyfuels.8b04381

    Article  CAS  Google Scholar 

  24. Chen Y, Cao X, Zhu S, Tian F, Xu Y, Zhu C, Dong L (2019) Synergistic hydrothermal liquefaction of wheat stalk with homogeneous and heterogeneous catalyst at low temperature. Bioresour Technol 278:92–98. https://doi.org/10.1016/j.biortech.2019.01.076

    Article  CAS  Google Scholar 

  25. Remon J, Randall J, Budarin VL, Clark JH (2019) Production of bio-fuels and chemicals by microwave-assisted, catalytic, hydrothermal liquefaction (MAC-HTL) of a mixture of pine and spruce biomass. Green Chem 21:284–299. https://doi.org/10.1039/c8gc03244k

    Article  CAS  Google Scholar 

  26. Tekin K, Akalin MK, Karagöz S (2016) The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. J Energy Inst 89(4):627–635. https://doi.org/10.1016/j.joei.2015.06.003

    Article  CAS  Google Scholar 

  27. Durak H (2019) Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods. Biomass Conv Biorefin 9(2):459–470. https://doi.org/10.1007/s13399-019-00379-4

    Article  CAS  Google Scholar 

  28. Hao N, Alper K, Tekin K, Karagoz S, Ragauskas AJ (2019) One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Bioresour Technol 288:121500. https://doi.org/10.1016/j.biortech.2019.121500

    Article  CAS  Google Scholar 

  29. Bi Z, Zhang J, Peterson E, Zhu Z, Xia C, Liang Y, Wiltowski T (2017) Biocrude from pretreated sorghum bagasse through catalytic hydrothermal liquefaction. Fuel 188:112–120. https://doi.org/10.1016/j.fuel.2016.10.039

    Article  CAS  Google Scholar 

  30. Cheng S, Wei L, Rabnawaz M (2018) Catalytic liquefaction of pine sawdust and in-situ hydrogenation of bio-crude over bifunctional Co-Zn/HZSM-5 catalysts. Fuel 223:252–260. https://doi.org/10.1016/j.fuel.2018.03.043

    Article  CAS  Google Scholar 

  31. Cheng S, Wei L, Alsowij M, Corbin F, Boakye E, Gu Z, Raynie D (2017) Catalytic hydrothermal liquefaction (HTL) of biomass for bio-crude production using Ni/HZSM-5 catalysts. AIMS Environ Sci 4(3):417–430

    Article  CAS  Google Scholar 

  32. Breunig M, Gebhart P, Hornung U, Kruse A, Dinjus E (2018) Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis. Biomass Bioenergy 111:352–360. https://doi.org/10.1016/j.biombioe.2017.06.001

    Article  CAS  Google Scholar 

  33. Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87:335–345. https://doi.org/10.1016/j.fuel.2007.05.013

    Article  CAS  Google Scholar 

  34. Xu C, Lad N (2008) Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuel 22:635–642. https://doi.org/10.1021/ef700424k

    Article  CAS  Google Scholar 

  35. Miyata Y, Yamazaki Y, Hirano Y, Kita Y (2018) Quantitative analysis of the aqueous fraction from the Fe-assisted hydrothermal liquefaction of oil palm empty fruit bunches. J Anal Appl Pyrolysis 132:72–81. https://doi.org/10.1016/j.jaap.2018.03.013

    Article  CAS  Google Scholar 

  36. Miyata Y, Sagata K, Yamazaki Y, Teramura H, Hirano Y, Ogino C, Kita Y (2018) Mechanism of the Fe-assisted hydrothermal liquefaction of lignocellulosic biomass. Ind Eng Chem Res 57:14870–14877. https://doi.org/10.1021/acs.iecr.8b03725

    Article  CAS  Google Scholar 

  37. de Caprariis B, Bavasso I, Bracciale MP, Damizia M, De Filippis P, Scarsella M (2019) Enhanced bio-crude yield and quality by reductive hydrothermal liquefaction of oak wood biomass: Effect of iron addition. J Anal Appl Pyrolysis 139:123–130. https://doi.org/10.1016/j.jaap.2019.01.017

    Article  CAS  Google Scholar 

  38. Aysu T, Durak H (2016) Catalytic effects of borax and iron(III) chloride on supercritical liquefaction of Anchusa azurea with methanol and isopropanol. Energ Sources Part A-Recov Util Environ Effects 38(12):1739–1749. https://doi.org/10.1080/15567036.2014.958633

    Article  CAS  Google Scholar 

  39. Hrcka R, Kučerová V, Hýrošová T (2018) Correlations between Oak Wood Properties. BioResources 13(4):8885–8898

    Article  CAS  Google Scholar 

  40. Kaliyan N, Morey RV (2010) Densification characteristics of corn cobs. Fuel Process Technol 91(5):559–565. https://doi.org/10.1016/j.fuproc.2010.01.001

    Article  CAS  Google Scholar 

  41. Kaliyan N, Morey R, White M, Doering A (2009) Roll press briquetting and pelleting of corn stover and switchgrass. Transact ASABE 52(2):543–555. https://doi.org/10.13031/2013.26812

    Article  Google Scholar 

  42. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Progress Energ Combust Sci 34(1):47–90. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  CAS  Google Scholar 

  43. Lucas-Torres C, Lorente A, Cabañas B, Moreno A (2016) Microwave heating for the catalytic conversion of melon rind waste into biofuel precursors. J Clean Prod 138:59–69. https://doi.org/10.1016/j.jclepro.2016.03.122

    Article  CAS  Google Scholar 

  44. Wiredu B, Amarasekara AS (2015) The effect of metal ions as co-catalysts on acidic ionic liquid catalyzed single-step saccharification of corn stover in water. Bioresour Technol 189:405–408. https://doi.org/10.1016/j.biortech.2015.04.030

    Article  CAS  Google Scholar 

  45. Minowa T, Zhen F, Ogi T (1997) Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures. J Chem Eng Japan 30(1):186–190. https://doi.org/10.1252/jcej.30.186

    Article  CAS  Google Scholar 

  46. Zhang H, Zhang S, Yuan H, Lyu G, Xie J (2018) FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time. Bioresour Technol 249:395–401. https://doi.org/10.1016/j.biortech.2017.10.053

    Article  CAS  Google Scholar 

  47. Amarasekara AS, Deng F (2019) Acidic ionic liquid catalyzed liquefaction of untreated switchgrass biomass in acetone and Pd-La(OTf)3 catalyzed reduction of the products. Biomass Bioenergy 127:105260. https://doi.org/10.1016/j.biombioe.2019.105260

    Article  CAS  Google Scholar 

  48. Yue Y, Lin Q, Irfan M, Chen Q, Zhao X, Li G (2017) Characteristics and potential values of bio-products derived from switchgrass grown in a saline soil using a fixed-bed slow pyrolysis system. BioResources 12(3):6529–6544

    Article  CAS  Google Scholar 

  49. Irmak S, Meryemoglu B, Sandip A, Subbiah J, Mitchell RB, Sarath G (2018) Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. Biomass Bioenergy 108:48–54. https://doi.org/10.1016/j.biombioe.2017.10.039

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from National Science Foundation of the United States (US-NSF) (through Grant Nos. CBET-1704144, HRD-1036593, and HRD-1914692).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Amarasekara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, F., Amarasekara, A.S. Iron(0)-Catalyzed Hydrothermal Liquefaction of Switchgrass: the Effects of Co-Catalysts and Reductive Conditions. Bioenerg. Res. 13, 1171–1179 (2020). https://doi.org/10.1007/s12155-020-10140-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10140-9

Keywords

Navigation