Skip to main content

Advertisement

Log in

Generation of recombinant VP3 protein of infectious bursal disease virus in three different expression systems, antigenic analysis of the obtained polypeptides and development of an ELISA test

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infectious bursal disease virus (IBDV), which infects young chickens, is one of the most important pathogens that harm the poultry industry. Evaluation of the immune status of birds before and after vaccination is of great importance for controlling the disease caused by this virus. Therefore, the development of low-cost and easy-to-manufacture test systems for IBDV antibody detection remains an urgent issue. In this study, three expression systems (bacteria, yeast, and human cells) were used to produce recombinant VP3 protein of IBDV. VP3 is a group-specific antigen and hence may be a good candidate for use in diagnostic tests. Comparison of the antigenic properties of the obtained polypeptides showed that the titres of antibodies raised in chickens against bacteria- or human-cell-derived recombinant VP3 were high, whereas the antibody level against yeast-derived recombinant VP3 was low. The results of an enzyme-linked immunosorbent assay (ELISA) of sera from IBDV-infected chickens demonstrated that the recombinant VP3 produced in E. coli would be the best choice for use in test systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Den Berg TP (2000) Acute infectious bursal disease in poultry: a review. Avian Pathol 29(3):175–194. https://doi.org/10.1080/03079450050045431

    Article  CAS  PubMed  Google Scholar 

  2. Müller H, Islam MR, Raue R (2003) Research on infectious bursal disease: the past, the present and the future. Vet Microbiol 97(1–2):153–165. https://doi.org/10.1016/j.vetmic.2003.08.005

    Article  PubMed  Google Scholar 

  3. Muller H, Mundt E, Eterradossi N, Islam MR (2012) Current status of vaccines against infectious bursal disease. Avian Pathol 41(2):133–139. https://doi.org/10.1080/03079457.2012.661403

    Article  PubMed  Google Scholar 

  4. Bottcher B, Kiselev NA, Stel'mashchuk VY, Perevozchikova NA, Borisov AV, Crowther RA (1997) Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol 71(1):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Müller H, Scholtissek C, Becht H (1979) The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31(3):584–589

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mundt E, Beyer J, Muller H (1995) Identification of a novel viral protein in infectious bursal disease virus infected cells. J Gen Virol 76(2):437–443. https://doi.org/10.1099/0022-1317-76-2-437

    Article  CAS  PubMed  Google Scholar 

  7. Azad AA, Barrett SA, Fahey KJ (1985) The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143:35–44. https://doi.org/10.1016/0042-6822(85)90094-7

    Article  CAS  PubMed  Google Scholar 

  8. Birghan C, Mundt E, Gorbalenya AE (2000) A non-canonical lon proteinase lacking the ATPase domain employs the Ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO J 19(1):114–123. https://doi.org/10.1093/emboj/19.1.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Müller H, Nitschke R (1987) The two segments of the infectious bursal disease virus genome are circularized by a 90,000-Da protein. Virology 159:174–177. https://doi.org/10.1016/0042-6822(87)90363-1

    Article  PubMed  Google Scholar 

  10. Maraver A, Oña A, Abaitua F, González D, Clemente R, Ruiz-Díaz JA, Castón JR, Pazos F, Rodriguez JF (2003) The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J Virol 77:6438–6449. https://doi.org/10.1128/jvi.77.11.6438-6449.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lombardo E, Maraver A, Castón JR, Rivera J, Fernández-Arias A, Serrano A, Carrascosa JL, Rodriguez JF (1999) VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73:6973–6983. https://doi.org/10.1128/JVI.73.8.6973-6983.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luque D, Saugar I, Rejas MT, Carrascosa JL, Rodríguez JF, Castón JR (2009) Infectious Bursal disease virus: ribonucleoprotein complexes of a double-stranded RNA virus. J Mol Biol 386:891–901. https://doi.org/10.1016/j.jmb.2008.11.029

    Article  CAS  PubMed  Google Scholar 

  13. Dalton RM, Rodrıguez JF (2014) Rescue of Infectious Birnavirus from Recombinant Ribonucleoprotein Complexes. PLoS ONE 9(1):e87790. https://doi.org/10.1371/journal.pone.0087790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Busnadiego I, Maestre AM, Rodriguez D, Rodriguez JF (2012) The infectious bursal disease virus RNA-binding VP3 polypeptide inhibits PKR-mediated apoptosis. PLoS ONE 7:e46768. https://doi.org/10.1371/journal.pone.0046768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valli A, Busnadiego I, Maliogka V, Ferrero D, Castón JR, Rodríguez JF, García JA (2012) The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes. PLoS ONE 7:e45957. https://doi.org/10.1371/journal.pone.0045957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fahey KJ, O’Donnell IJ, Azad AA (1985) Characterization by Western blotting of the immunogens of infectious bursal disease virus. J Gen Virol 66:1479–1488. https://doi.org/10.1099/0022-1317-66-7-1479

    Article  CAS  PubMed  Google Scholar 

  17. Becht H, Muller H, Muller HK (1988) Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J Gen Virol 69:631–640. https://doi.org/10.1099/0022-1317-69-3-631

    Article  CAS  PubMed  Google Scholar 

  18. Jackwood DJ, Henderson KS, Jackwood RJ (1996) Enzyme-linked immunosorbent assay-based detection of antibodies to antigenic subtypes of infectious bursal disease viruses of chickens. Clin Diagn Lab Immunol 3(4):456–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang MY, Hu HL, Suen SY, Chiu FY, Shien JH, Lai SY (2008) Development of an enzyme-linked immunosorbent assay for detecting infectious bursal disease virus (IBDV) infection based on the VP3 structural protein. Vet Microbiol 131(3–4):229–236. https://doi.org/10.1016/j.vetmic.2008.03.010

    Article  CAS  PubMed  Google Scholar 

  20. Singh NK, Dey S, Madhan Mohan C, Mohan Kataria J, Vakharia VN (2010) Evaluation of four enzyme linked immunosorbent assays for the detection of antibodies to infectious bursal disease in chickens. J Virol Methods 165(2):277–282. https://doi.org/10.1016/j.jviromet.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  21. Martinez-Torrecuadrada JL, Lazaro B, Rodriguez JF, Casal JI (2000) Antigenic properties and diagnostic potential of baculovirus-expressed infectious bursal disease virus proteins VPX and VP3. Clin Diagn Lab Immunol 7:645–651. https://doi.org/10.1128/cdli.7.4.645-651.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shirokov DA, Dubovoi AS, Manuvera VA, Samuseva GN, Dmitrieva ME, Lazarev VN (2018) Complete genome sequence of a novel very virulent strain of infectious bursal disease virus circulating in Russia. Microbiol Resour Announc 7:e01084–e1118. https://doi.org/10.1128/MRA.01084-18

    Article  PubMed  PubMed Central  Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  24. Classen DC, Morningstar JM, Shanley JD (1987) Detection of antibody to murine cytomegalovirus by enzyme-linked immunosorbent and indirect immunofluorescence assays. J Clin Microbiol 25(4):600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R (2014) Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res 186:20–31. https://doi.org/10.1016/j.virusres.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  26. de Wit JJ, van de Sande HW, Counotte GH, Wellenberg GJ (2007) Analyses of the results of different test systems in the 2005 global proficiency testing schemes for infectious bursal disease virus and Newcastle disease virus antibody detection in chicken serum. Avian Pathol 36(2):177–183. https://doi.org/10.1080/03079450601105676

    Article  PubMed  Google Scholar 

  27. Snyder DB, Marquardt WW, Mallinson ET, Russek-Cohen E, Savage PK, Allen DC (1986) Rapid serological profiling by enzyme-linked immunosorbent assay. IV. Association of infectious bursal disease serology with broiler flock performance. Avian Dis 30(1):139–148

    Article  CAS  PubMed  Google Scholar 

  28. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270. https://doi.org/10.1002/yea.1208

    Article  CAS  PubMed  Google Scholar 

  29. VIOLIN, vaccine database: https://www.violinet.org/vaxquery/vaxquery_results.php?searchEngine=vaxquery&keywords=IBDV

  30. Bayliss CD, Peters RW, Cook JK, Reece RL, Howes K, Binns MM, Boursnell ME (1991) A recombinant fowlpox virus that expresses the VP2 antigen of infectious bursal disease virus induces protection against mortality caused by the virus. Arch Virol 120(3–4):193–205. https://doi.org/10.1007/BF01310475

    Article  CAS  PubMed  Google Scholar 

  31. Shaw I, Davison TF (2000) Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype. Vaccine 18(28):3230–3241. https://doi.org/10.1016/s0264-410x(00)00133-x

    Article  CAS  PubMed  Google Scholar 

  32. Darteil R, Bublot M, Laplace E, Bouquet JF, Audonnet JC, Rivière M (1995) Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens. Virology 211(2):481–490. https://doi.org/10.1006/viro.1995.1430

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daria Matyushkina (Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia) for the MALDI-TOF analysis. We also thank Tatyana A. Akopian and Oksana V. Selezneva (Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia) for the Sanger dideoxy sequencing of genetic constructs. We thank the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency for the expertise and guidance in genetic engineering.

Funding

This work was supported by the Russian Science Foundation (project 16-16-04051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy A. Shirokov.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical statement

Care and use of the laboratory animals involved in this research was carried out in accordance with EU Directive 2010/63/EU for animal experiments and FELASA recommendations (e.g. Guidelines for the Veterinary Care of Laboratory Animals [2008]). The animal use protocol was reviewed and approved by the Ethics Committee of the All-Russian Research Veterinary Institute of Poultry Science.

Additional information

Handling Editor: Patricia Aguilar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, D.A., Manuvera, V.A., Miroshina, O.A. et al. Generation of recombinant VP3 protein of infectious bursal disease virus in three different expression systems, antigenic analysis of the obtained polypeptides and development of an ELISA test. Arch Virol 165, 1611–1620 (2020). https://doi.org/10.1007/s00705-020-04650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04650-2

Navigation