Skip to main content
Log in

Upward Planar Morphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We prove that, given two topologically-equivalent upward planar straight-line drawings of an n-vertex directed graph G, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O(1) morphing steps if G is a reduced planar st-graph, O(n) morphing steps if G is a planar st-graph, O(n) morphing steps if G is a reduced upward planar graph, and \(O(n^2)\) morphing steps if G is a general upward planar graph. Further, we show that \(\varOmega (n)\) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an n-vertex path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Two upward planar drawings \(\varGamma _0\) and \(\varGamma _1\) of a connected directed graph G are topologically-equivalent if, for each vertex v of G, the left-to-right order of the edges incoming into (outgoing from) v is the same in \(\varGamma _0\) as in \(\varGamma _1\).

  2. This insertion problem has been studied and solved in [2] for planar morphs of undirected graphs. Here we cannot immediately reuse the results in [2], as we need to preserve the upwardness of the drawing throughout the morph. However, the property that every drawing of \(G'\) in \({\mathcal{M}}'\) is upward significantly simplifies the problem of inserting v in \({\mathcal{M}}'\) so to obtain an upward planar morph of G.

References

  1. Aichholzer, O., Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmovic, V., Hurtado, F., Lubiw, A., Rote, G., Schulz, A., Souvaine, D.L., Winslow, A.: Convexifying polygons without losing visibilities. In: 23rd Canadian Conference on Computational Geometry (CCCG ’11) (2011)

  2. Alamdari, S., Angelini, P., Barrera-Cruz, F., Chan, T.M., Da Lozzo, G., Di Battista, G., Frati, F., Haxell, P., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B.T.: How to morph planar graph drawings. SIAM J. Comput. 46(2), 824–852 (2017)

    Article  MathSciNet  Google Scholar 

  3. Alamdari, S., Angelini, P., Chan, T.M., Di Battista, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B.T.: Morphing planar graph drawings with a polynomial number of steps. In: Khanna, S. (ed.) 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’13), pp. 1656–1667 (2013)

  4. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) 41st International Colloquium on Automata, Languages and Programming (ICALP ’14), volume of 8572 Lecture Notes in Computer Science, pp. 126–137. Springer, Berlin (2014)

    Google Scholar 

  5. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal morphs of convex drawings. In: Symposium on Computational Geometry, volume 34 of LIPIcs, pp. 126–140. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

  6. Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings efficiently. In: Wismath, S., Wolff, A. (eds.) Proceedings of 21st International Symposium on Graph Drawing (GD ’13), Lecture Notes in Computer Science. Springer (2013)

  7. Barrera-Cruz, F., Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: How to morph a tree on a small grid. In: Friggstad, Z., Sack, J., Salavatipour, M.R. (eds.) Algorithms and Data Structures: 16th International Symposium, WADS 2019, Edmonton, AB, Canada, 5–7 August 2019, Proceedings, volume 11646 of Lecture Notes in Computer Science, pp. 57–70. Springer, Berlin (2019)

  8. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing planar graph drawings with unidirectional moves. In: Mexican Conference on Discrete Mathematics and Computational Geometry, pp. 57–65 (2013). arXiv:1411.6185

  9. Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to draw a series-parallel digraph. Int. J. Comput. Geom. Appl. 4(4), 385–402 (1994)

    Article  MathSciNet  Google Scholar 

  10. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)

    Article  MathSciNet  Google Scholar 

  11. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

    Article  MathSciNet  Google Scholar 

  12. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph drawings. ACM Trans. Algorithms (TALG) 9(4), 29 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Biedl, T.C., Lubiw, A., Spriggs, M.J.: Morphing planar graphs while preserving edge directions. In: Healy, P., Nikolov, N.S. (eds.) 13th International Symposium on Graph Drawing (GD ’05), volume 3843 of Lecture Notes in Computer Science, pp. 13–24. Springer (2006)

  14. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Mon. 51(5), 247–252 (1944)

    Article  MathSciNet  Google Scholar 

  15. Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: Dynamic graph drawings: trees, series-parallel digraphs, and planar ST-digraphs. SIAM J. Comput. 24(5), 970–1001 (1995)

    Article  MathSciNet  Google Scholar 

  16. Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings. In: WADS, volume 11646 of Lecture Notes in Computer Science, pp. 339–352. Springer (2019)

  17. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Upward planar morphs. In: Biedl, T., Kerren, A. (eds.) 26th International Symposium on Graph Drawing and Network Visualization (GD ’18), Lecture Notes in Computer Science. Springer (2018) (to appear)

  18. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  19. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)

    Article  MathSciNet  Google Scholar 

  20. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7(4), 381–401 (1992)

    Article  MathSciNet  Google Scholar 

  21. Fáry, I.: On straight-line representation of planar graphs. Acta Scientiarum Mathematicarum (Szeged) 11, 229–233 (1948)

    MathSciNet  MATH  Google Scholar 

  22. Frati, F., Gudmundsson, J., Welzl, E.: On the number of upward planar orientations of maximal planar graphs. Theor. Comput. Sci. 544, 32–59 (2014)

    Article  MathSciNet  Google Scholar 

  23. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2002)

    Article  MathSciNet  Google Scholar 

  24. Hong, S., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010)

    Article  MathSciNet  Google Scholar 

  25. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)

    Article  MathSciNet  Google Scholar 

  26. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-increasing morphs of planar graphs. Comput. Geom. 84, 69–88 (2019)

    Article  MathSciNet  Google Scholar 

  27. Mehlhorn, K.: Data Structures and Algorithms: Multi-dimensional Searching and Computational Geometry, vol. 3. Springer, Berlin (1984)

    MATH  Google Scholar 

  28. Roselli, V.: Morphing and visiting drawings of graphs. Ph.D. thesis, Università degli Studi di Roma “Roma Tre”, Dottorato di Ricerca in Ingegneria, Sezione Informatica ed Automazione, XXVI Ciclo (2014)

  29. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

    Article  MathSciNet  Google Scholar 

  30. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, pp. 138–148, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (1990)

  31. Smith, H.L.: On continuous representations of a square upon itself. Ann. Math. 19(2), 137–141 (1917)

    Article  MathSciNet  Google Scholar 

  32. Tamassia, R., Tollis, I.G.: Algorithms for visibility representations of planar graphs. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 86, 3rd Annual Symposium on Theoretical Aspects of Computer Science, Orsay, France, 16–18 January 1986, Proceedings, volume 210 of Lecture Notes in Computer Science, pp. 130–141. Springer (1986)

  33. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)

    Article  MathSciNet  Google Scholar 

  34. Thomassen, C.: Deformations of plane graphs. J. Combin. Theory Ser. B 34(3), 244–257 (1983)

    Article  MathSciNet  Google Scholar 

  35. Tietze, H.: Über stetige abbildungen einer quadratfläche auf sich selbst. Rendiconti del Circolo Matematico di Palermo 38(1), 247–304 (1914)

    Article  Google Scholar 

  36. van Goethem, A., Verbeek, K.: Optimal morphs of planar orthogonal drawings. In: 34th International Symposium on Computational Geometry, SoCG 2018, 11–14 June 2018, Budapest, Hungary, pp. 42:1–42:14 (2018)

Download references

Acknowledgements

This research was supported in part by MIUR Project “MODE” under PRIN 20157EFM5C, by MIUR Project “AHeAD” under PRIN 20174LF3T8, by MIUR-DAAD JMP No. 34120, by H2020-MSCA-RISE project 734922—“CONNECT”, and by Roma Tre University Azione 4 Project “GeoView”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Frati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in [17].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Lozzo, G., Di Battista, G., Frati, F. et al. Upward Planar Morphs. Algorithmica 82, 2985–3017 (2020). https://doi.org/10.1007/s00453-020-00714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00714-6

Keywords

Navigation