Skip to main content
Log in

Wave Propagation in Two-Temperature Porothermoelasticity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the present paper, the governing equations for two-temperature generalized porothermoelasticity are formulated in accordance with Green and Naghdi theory of thermoelasticity without energy dissipation. Two-dimensional plane wave solution of these governing equations indicates the existence of one shear vertical and four coupled longitudinal waves in porothermoelastic medium. A problem on reflection of longitudinal and shear waves is considered at a thermally insulated and stress-free surface of a generalized porothermoelastic solid half-space. The appropriate potentials for incident and reflected waves satisfy the required boundary conditions at free surface of the half-space and a non-homogeneous system of five equations in reflection coefficients is obtained. The expressions for energy ratios of reflected waves are obtained for incidence of both longitudinal and shear waves. The numerical results are obtained for values of porosity lying between 0.01 and 0.5, which are suitable for most of rocks present in the earth’s crust. The experimental data of kerosene-saturated sandstone are selected for numerical computations to observe the effects of two-temperature parameters and porosity on the energy ratios of reflected waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data and Resources Section

The data used in computations are taken from published source (Yew and Jogi, 1976) cited in the reference list.

References

  1. M.A. Biot, J. Appl. Mech. 23, 91 (1956)

    MathSciNet  Google Scholar 

  2. M.A. Biot, J. Acoust. Soc. Am. 28, 168 (1956)

    Article  ADS  Google Scholar 

  3. M.A. Biot, J. Appl. Phys. 33, 1482 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Deresiewicz, J.T. Rice, Bull. Seismol. Soc. Am. 52, 595 (1962)

    Google Scholar 

  5. C. Pecker, H. Deresiewicz, Acta Mech. 16, 45 (1973)

    Article  Google Scholar 

  6. J.G. Berryman, Appl. Phys. Lett. 37, 382 (1980)

    Article  ADS  Google Scholar 

  7. J.G. Berryman, Geophysics 70, N1 (2005)

    Article  Google Scholar 

  8. T.J. Plona, Appl. Phys. Lett. 36, 259 (1980)

    Article  ADS  Google Scholar 

  9. S. Hajra, A. Mukhopadhyay, Bull. Seismol. Soc. Am. 72, 1509 (1982)

    Google Scholar 

  10. M.D. Sharma, M.L. Gogna, J. Acoust. Soc. Am. 90, 1068 (1991)

    Article  ADS  Google Scholar 

  11. D.L. Johnson, T.J. Plona, H. Kojima, J. Appl. Phys. 76, 115 (1994)

    Article  ADS  Google Scholar 

  12. J.M. Carcione, J. Acoust. Soc. Am. 99, 2655 (1996)

    Article  ADS  Google Scholar 

  13. O. Kelder, D.M.J. Smeulders, Geophysics 62, 1794 (1997)

    Article  ADS  Google Scholar 

  14. N.K. Nakagawa, K. Soga, J.K. Mitchell, Geotechnique 47, 133 (1997)

    Article  Google Scholar 

  15. A. Gajo, A. Fedel, L. Mongiovi, Geotechnique 47, 993 (1997)

    Article  Google Scholar 

  16. N. Khalili, M. Yazdchi, S. Valliappan, Soil Dyn. Eq. Eng. 18, 533 (1999)

    Article  Google Scholar 

  17. M. Tajuddin, S.J. Hussaini, J. Appl. Geophys. 58, 59 (2005)

    Article  ADS  Google Scholar 

  18. B. Albers, K. Wilmanski, Arch. Mech. 58, 313 (2006)

    Google Scholar 

  19. J.-T. Wang, F. Jin, C.-H. Zhang, Ocean Eng. 63, 8 (2013)

    Article  Google Scholar 

  20. M.D. Sharma, J. Earth Syst. Sci. 116, 357 (2007)

    Article  ADS  Google Scholar 

  21. Y. Li, Z.-W. Cui, Y.-J. Zhang, K.-X. Wang, Rock Soil Mech. 28, 1595 (2007)

    Google Scholar 

  22. F.I. Zyserman, J.E. Santos, Compt. Methods Appl. Mech. Eng. 196, 4644 (2007)

    Article  ADS  Google Scholar 

  23. S. Nakagawa, M.A. Schoenberg, J. Acoust. Soc. Am. 122, 831 (2007)

    Article  ADS  Google Scholar 

  24. W.-C. Lo, Adv. Water Res. 31, 1399 (2008)

    Article  Google Scholar 

  25. C.-L. Yeh, W.-C. Lo, C.-D. Jan, C.-C. Yang, J. Hydrol. 395, 91 (2010)

    Article  ADS  Google Scholar 

  26. M.D. Sharma, IMA, J. Appl. Math. 78, 59 (2013)

  27. M.D. Sharma, J. Porous Media 21, 35 (2018)

    Article  Google Scholar 

  28. D. Wang, H.-L. Zhang, X.-M. Wang, Chin. J. Geophys. 49, 524 (2006)

    Google Scholar 

  29. R. Chattaraj, L. Samal, Meccanica 51, 2215 (2016)

    Article  MathSciNet  Google Scholar 

  30. E. Wang, J.M. Carcione, J. Ba, Y. Liu, Surv. Geophys. 41, 283 (2019)

    Article  ADS  Google Scholar 

  31. S. Hoseinzadeh, P.S. Heyns, A.J. Chamkha, A. Shirkhani, J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08203-x

    Article  Google Scholar 

  32. S. Hoseinzadeh, A. Moafi, A. Shirkhani, A.J. Chamkha, J. Thermophys. Heat Transf. (2019). https://doi.org/10.2514/1.t5583

    Article  Google Scholar 

  33. S. Hoseinzadeh, R. Ghasemiasl, D. Havaei, A.J. Chamkha, J. Mol. 271, 655 (2019)

    Google Scholar 

  34. M.H. Ghasemi, S. Hoseinzadeh, P.S. Heyns, D.N. Wilke, Comput. Model. Eng. Sci. 122, 399 (2020)

    Google Scholar 

  35. M.A. Biot, J. Appl. Phys. 27, 240 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  36. R.L. Schiffman, in Environmental and Geophysical Heat Transfer, vol. 99 (ASME, New York, 1971), pp. 78–84

  37. R.M. Bowen, Acta Mech. 46, 189 (1983)

    Article  Google Scholar 

  38. D. McTigue, J. Geophys. Res. 91, 9533 (1986)

    Article  ADS  Google Scholar 

  39. M. Kurashige, Int. J. Solids Struct. 25, 1039 (1989)

    Article  Google Scholar 

  40. J. Bear, S. Sorek, G. Ben-Dor, G. Mazor, Fluid Dyn. Res. 9, 155 (1992)

    Article  ADS  Google Scholar 

  41. S. Sorek, J. Bear, G. Ben-Dor, G. Mazor, Transport Porous Med. 9, 3 (1992)

    Article  Google Scholar 

  42. Y. Zhou, R.K.N.D. Rajapakse, J. Graham, Int. J. Solids Struct. 35, 4659 (1998)

    Article  Google Scholar 

  43. A. Ghassemi, A. Diek, J. Petrol. Sci. Eng. 34, 123 (2002)

    Article  Google Scholar 

  44. Y. Abousleiman, S. Ekbote, J. Appl. Mech. 72, 102 (2005)

    Article  ADS  Google Scholar 

  45. H.M. Youssef, Int. J. Rock Mech. Min. Sci. 44, 222 (2007)

    Article  Google Scholar 

  46. M.D. Sharma, J. Earth Syst. Sci. 117, 951 (2008)

    Article  ADS  Google Scholar 

  47. B. Singh, Bull. Seismol. Soc. Am. 101, 756 (2011)

    Article  Google Scholar 

  48. B. Singh, J. Porous Media. 16, 945–957 (2013)

    Article  Google Scholar 

  49. T. Haibing, L. Ganbin, X. Kanghe, Z. Rongyue, D. Yuebao, Transport Porous Med. 103, 47 (2014)

    Article  Google Scholar 

  50. W. Wei, R.Y. Zheng, G.B. Liu, H.B. Tao, Transport Porous Med. 395, 1 (2016)

    Article  Google Scholar 

  51. B. Singh, in Poromechanics VI (ASCE, 2017), pp. 1706–1713

  52. M.D. Sharma, Waves Random Complex Media 28, 570 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  53. J.M. Carcione, F. Cavallini, E. Wang, J. Ba, L.-Y. Fu, J. Geophys. Res. Solid Earth 124, 8147 (2019)

    Article  ADS  Google Scholar 

  54. F. Zhou, H. Liu, S. Li, J. Therm. Stresses 42, 1256 (2019)

    Article  Google Scholar 

  55. F. Zhou, R. Zhang, H. Liu, G. Yue, J. Therm. Stresses (2020). https://doi.org/10.1080/01495739.2019.1711478

    Article  Google Scholar 

  56. P.J. Chen, M.E. Gurtin, Z. Angew, Math. Phys. 19, 614 (1968)

    Google Scholar 

  57. P.J. Chen, M.E. Gurtin, W.O. Williams, Z. Angew, Math. Phys. 19, 969 (1968)

    Google Scholar 

  58. P.J. Chen, M.E. Gurtin, W.O. Williams, Z. Angew, Math. Phys. 20, 107 (1969)

    Google Scholar 

  59. W.E. Warren, P.J. Chen, Acta Mech. 16, 21 (1973)

    Article  Google Scholar 

  60. P. Puri, P.M. Jordan, Int. J. Eng. Sci. 44, 1113 (2006)

    Article  Google Scholar 

  61. H.M. Youssef, J. Appl. Math. 71, 383 (2006)

    Google Scholar 

  62. H.M. Youssef, J. Therm. Stresses 34, 138 (2011)

    Article  Google Scholar 

  63. H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  Google Scholar 

  64. A.E. Green, P.M. Naghdi, J. Elast. 31, 189 (1993)

    Article  Google Scholar 

  65. R. Kumar, S. Mukhopadhyay, Int. J. Eng. Sci. 48, 128 (2010)

    Article  Google Scholar 

  66. B. Singh, K. Bala, J. Mech. Mater. Struct. 7, 183 (2012)

    Article  Google Scholar 

  67. R. Bijarnia, B. Singh, Int. J. Appl. Mech. Eng. 21, 285 (2016)

    Article  Google Scholar 

  68. M.I.A. Othman, S. Said, M. Marin, Int. J. Numer. Methods Heat Fluid Flows 29, 4788 (2019)

  69. C. D’Apice, V. Zampoli, S. Chiriţă, J. Elast. (2020) https://doi.org/10.1007/s10659-020-09770-z

  70. H. Helmholtz, J. Reine Angew Math. 55, 25 (1858)

    MathSciNet  Google Scholar 

  71. J.D. Achenbach, Wave Propagation in Elastic Solids (Elsevier, North Holland, 1973)

    MATH  Google Scholar 

  72. C.H. Yew, P.N. Jogi, J. Acoust. Soc. Am. 60, 2 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author (Baljeet Singh) acknowledges University Grants Commission, New Delhi for granting a Major Project (MRP-MAJOR-MATH-2013-2149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljeet Singh.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix 1

The expressions for ABCD and E have been obtained as

$$\begin{aligned} A &= {} ({\rho }_{11} {\rho }_{22} - {\rho }^2_{12})(F_{11} F_{22} - F_{12} F_{21}),\\ B &= {} (F_{12} F_{21} - F_{11} F_{22}) [\rho _{22}(\lambda + 2 \mu ) + \rho _{11} R - 2 \rho _{12} Q] \\&+ (K^{*s} F_{22} + K^{*f} F_{11} ) (\rho _{12}^2 - \rho _{11} \rho _{22})\\&+ T_0 [F_{11} (2 \rho _{12} R_{12} R_{22} - \rho _{11} R^2_{22} - \rho _{22} R^2_{12}) + F_{22} (2 \rho _{12} R_{11} R_{21} - \rho _{22} R^2_{11} - \rho _{11} R^2_{21}) \\&+ (F_{12} + F_{21})(\rho _{22} R_{11} R_{22} + \rho _{11} R_{21} R_{22} - \rho _{12} R_{12} R_{21} - \rho _{12} R_{11} R_{22})],\\ C &= {} (F_{11} F_{22} - F_{12} F_{21}) [(\lambda + 2 \mu ) R - Q^2] (K^{*s} F_{22} + K^{*f} F_{11})[(\lambda + 2 \mu ) \rho _{22} \\&+ \rho _{11} R - 2 \rho _{12} Q] \\&+ K^{*s} T_0 [\rho _{11} R^2_{22} + \rho _{22} R^2_{12} - 2 \rho _{12} R_{12} R_{22}] + K^{*f} T_0 [\rho _{11} R^2_{21} + \rho _{22} R^2_{11} - 2 \rho _{12} R_{11} R_{21}] \\&+ K^{*s} K^{*f} ({\rho }_{11} {\rho }_{22} - {{\rho }_{12}}^2) + T^2_0 (R^2_{11} R^2_{22} + R^2_{12} R^2_{21} - 2 R_{11} R_{21} R_{12} R_{22}) \\&+ T_0 [(\lambda + 2 \mu ) \{R^2_{21} F_{22} + R^2_{22} F_{11} - R_{21} R_{22} (F_{12} + F_{21})\} \\&+ Q \{(F_{12} + F_{21}) (R_{11} R_{22} + R_{12} R_{21}) - 2 R_{11} R_{21} F_{22} - 2 R_{12} R_{22} F_{11}\} \\&+ R \{ R^2_{11} F_{22} + R^2_{12} F_{11} - R_{11} R_{12} (F_{12} + F_{21})\}], \\ D &= {} -K^{*s} K^{*f} [\rho _{22}(\lambda + 2 \mu ) + \rho _{11} R - 2 \rho _{12} Q] + K^{*s} [Q^2 F_{22} + 2Q R_{12} R_{22} - R R^2_{12} \\&- (\lambda + 2 \mu ) (T_0 R^2_{22} + R F_{22})] + K^{*f} [Q^2 F_{11} + 2Q R_{11} R_{21} - R R^2_{11} \\&- (\lambda + 2 \mu ) (T_0 R^2_{21} + R F_{11})],\\ E& = {} K^{*s} K^{*f}[R(\lambda + 2 \mu ) - Q^2], \end{aligned}$$

where \( K^{*s} = \frac{K^s}{1+a^{*s}k^2}\) and \(K^{*s} = \frac{K^f}{1+a^{*f}k^2}\).

1.2 Appendix 2

The expressions for \({\eta }_i, {\zeta }_i\) and \({\xi }_i\) (i = 1, 2,…, 4) are derived as

$$\begin{aligned} {\eta }_i= & {} -\bigg [\displaystyle \frac{\Delta T_0 R_{11} {V_{i}}^2 +(K^{*s}-{V_{i}}^2F_{11})(R_{22}W_1-R_{12}W_2)+F_{12}{V_i}^2(R_{21}W_1-R_{11}W_2)}{\Delta T_0 R_{21} {V_{i}}^2 +(K^{*s}-{V_{i}}^2 F_{11})(R_{22}W_2-R_{12}W_3)+F_{12}{V_i}^2(R_{21}W_2-R_{11}W_3)}\bigg ], \end{aligned}$$
(34)
$$\begin{aligned} {\zeta }_i= & {} \frac{k^2_i}{(1+a^{*s}{k^2_i})}\bigg [\displaystyle \frac{R_{22}W_1-R_{12} W_2+ \eta _i (R_{22} W_2-R_{12}W_3)}{\Delta }\bigg ], \end{aligned}$$
(35)
$$\begin{aligned} {\xi }_i= & {} -\frac{k^2_i}{(1+a^{*f}{k^2_i})}\bigg [\displaystyle \frac{R_{21}W_1-R_{11} W_2+ \eta _i (R_{21} W_2-R_{11}W_3)}{\Delta }\bigg ], \end{aligned}$$
(36)

where

$$\begin{aligned} \Delta = R_{12} R_{21} - R_{11} R_{22}, ~W_1 = (\lambda + 2\mu ) - {\rho }_{11} {V_i}^2,~W_2 = Q - {\rho }_{12} {V_i}^2,~W_3 = R - {\rho }_{22} {V_i}^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B. Wave Propagation in Two-Temperature Porothermoelasticity. Int J Thermophys 41, 97 (2020). https://doi.org/10.1007/s10765-020-02670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02670-3

Keywords

Navigation