Skip to main content
Log in

Numerical Simulation of the Evaporation Process of Monodispersed Quartz Particles in an Argon Plasma Flow of Induction Plasmatron

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The processes of the heating and evaporation of quartz particles in an argon plasma flow of high-frequency induction plasmatron are numerically simulated within the model of a two-phase, collisionless, monodispersed mixture. The conditions for the implementation of a ring-type vortex flow pattern with full and partial particle penetration into the high-temperature zone are determined. The effect of particle feed rate on the gasdynamics of a dispersed flow is shown. The dependences of the evaporation efficiency on the main operating parameters of particle processing process, primarily, the particle feed rate, Joule power of the plasmatron, particle size and injection angle are established. Recommendations are given for the selection of the optimal operating parameters of the plasmatron and flow parameters of the processed quartz particles. It is shown that such a plasmatron with a power of about 5 kW provides a complete evaporation of quartz particle flow with diameter up to 50–70 μm and feed rate up to (8–10) × 10–5 kg/s at specific energy costs at a level of 50 MJ/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Grishin, Yu.M., Kozlov, N.P., and Skryabin, A.S., High Temp., 2012, vol. 50, no. 4, p. 459.

    Article  Google Scholar 

  2. Colombo, V., Ghedini, E., Gherardi, M., and Sanibondi, P., Plasma Sources Sci. Technol., 2013, vol. 22, 035010.

    Article  ADS  Google Scholar 

  3. Mendoza Gonzalez, N.Y., El Morsli, M., and Proulx, P., J. Therm. Spray Technol., 2008, vol. 17, p. 533.

    Article  ADS  Google Scholar 

  4. Novikov, I.N. and Kruchinin, A.M., Tech. Phys. Lett., 2014, vol. 40, no. 20, p. 920.

    Article  ADS  Google Scholar 

  5. Grishin, Yu.M. and Miao, L., Nauka Obrazov., 2017, no. 5, p. 119. https://technomagelpub.elpub.ru/jour/ article/viewFile/1196/1090.

  6. Grishin, Yu.M. and Miao, L., J. Phys.: Conf. Ser., 2017, vol. 830, 012069.

    Google Scholar 

  7. Raeymaekers, B., Graule, T., Broekaert, J.A.C., Adams, F., and Tschopel, P., Spectrochim. Acta, Part B, 1988, vol. 43, p. 923.

    Article  ADS  Google Scholar 

  8. Wei, D.Y.C., Farouk, B., and Apelian, D., Metall. Mater. Trans. B, 1988, vol. 19, p. 213.

    Article  ADS  Google Scholar 

  9. Shigeta, M., Sato, T., and Nishiyama, H., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 707.

    Article  Google Scholar 

  10. Boulos, M.I., IEEE Trans. Plasma Sci., 1978, vol. 6, p. 93.

    Article  ADS  Google Scholar 

  11. Aghaei, M. and Bogaerts, A., J. Anal. At. Spectrom., 2016, vol. 31, p. 631.

    Article  Google Scholar 

  12. Proulx, P., Mostaghimi, J., and Boulos, M.I., Int. J. Heat Mass Transfer, 1985, vol. 28, p. 1327.

    Article  Google Scholar 

  13. Colombo, V., Ghedini, E., and Sanibondi, P., Plasma Sources Sci. Technol., 2010, vol. 19, 065024.

    Article  ADS  Google Scholar 

  14. Bernardi, D., Colombo, V., Ghedini, E., Mentrelli, A., and Trombetti, T., Eur. Phys. J. D, 2004, vol. 28, p. 423.

    Article  ADS  Google Scholar 

  15. Fauchais, P.L., Heberlein, J.R., and Boulos, M.I., Thermal Spray Fundamentals: From Powder to Part, New York: Springer, 2014.

    Book  Google Scholar 

  16. Qian, L.J., Lin, J.Z., and Yu, M.Z., J. Therm. Spray Technol., 2013, vol. 22, p. 1024.

    Article  ADS  Google Scholar 

  17. Shan, Y.G., IEEE Trans. Plasma Sci., 2009, vol. 37, p. 1747.

    Article  ADS  Google Scholar 

  18. Guo, J., Fan, X., Dolbec, R., Xue, S., Jurewicz, J., and Boulos, M., Plasma Sci. Technol., 2010, vol. 12, p. 188.

    Article  ADS  Google Scholar 

  19. Grishin, Yu.M., Kozlov, N.P., and Skryabin, A.S., High Temp., 2016, vol. 54, no. 5, p. 619.

    Article  Google Scholar 

  20. Miao, L. and Grishin, Yu.M., Plasma Sources Sci. Technol., 2018, vol. 27, p. 115008.

    Article  ADS  Google Scholar 

  21. Xue, S., Proulx, P., and Boulos, M.I., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 1897.

    Article  ADS  Google Scholar 

  22. Varaksin, A.Yu., High Temp., 2018. V. 56, no. 2, p. 275.

    Article  Google Scholar 

  23. Crowe, C.T., Sharma, M.P., and Stock, D.E., J. Fluids Eng., 1977, vol. 99, p. 325.

  24. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, part 1.

  25. Volkov, K.N. and Emel’yanov, V.N., Vychisl. Metody Program., 2008, vol. 9, no. 1, p. 19.

    Google Scholar 

  26. Boulos, M.I., Pure Appl. Chem., 1985, vol. 57, p. 1321.

    Article  Google Scholar 

  27. Varaksin, A.Yu., Turbulentnye techeniya gaza s tverdymi chastitsami (Turbulent Gas Flows with Solid Particles), Moscow: Fizmatlit, 2003.

  28. Katsnel’son, S.S. and Koval’skaya, G.A., Teplofizicheskie i opticheskie svoistva argonovoi plazmy (Thermophysical and Optical Properties of Argon Plasma), Novosibirsk: Nauka, 1985.

  29. Chase, M.W., Davies, C.A., Downey, J.R., Frurip, D.J., McDonald, R.A., and Syverud, A.N., J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 1 (suppl.).

  30. Boulos, M.I., Fauchais, P., and Pfender, E., Thermal Plasmas: Fundamentals and Applications, New York: Springer, 1994, vol. 1.

    Book  Google Scholar 

  31. Babichev, A.P., Babushkina, A.P., Bratkovskii, A.M., et al., Fizicheskie velichiny: Spravochnik (Physical Quantities: Handbook), Moscow: Energoatomizdat, 1991.

  32. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: Wiley, 2006, 2nd ed.

  33. Grishin, Yu.M. and Miao, L., Prikl. Fiz., 2018, no. 2, p. 15.

  34. Miao, L. and Grishin, Yu.M., Plasma Phys. Rep., 2018, vol. 44, no. 11, p. 1019.

    Article  ADS  Google Scholar 

  35. Dresvin, S.V. Osnovy teorii rascheta vysokochastotnykh plazmotronov (Fundamentals Theoretical Calculations of High-Frequency Plasmatrons, Leningrad: Energoatomizdat, 1991.

  36. Miao, L. and Grishin, Yu.M., Int. J. Heat Mass Transfer, 2019, vol. 144.https://doi.org/10.1016/j.ijheatmasstransfer.2019.118671

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Miao.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, Y.M., Miao, L. Numerical Simulation of the Evaporation Process of Monodispersed Quartz Particles in an Argon Plasma Flow of Induction Plasmatron. High Temp 58, 1–11 (2020). https://doi.org/10.1134/S0018151X20010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20010071

Navigation