Skip to main content
Log in

Photon Blockade in a Hybrid Double-Cavity QED System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the realization of photon blockade effect in a hybrid double cavity QED system. By studying the photon statistics of the system, the photon blockade effect can be achieved. Those statistical phenomena are all analyzed in detail and demonstrated by solving the Schrödinger equation analytically and simulating the master equation numerically. Furthermore, we can achieve a better photon blockade effect by manipulating the effective decay rate of the auxiliary cavity and the coupling strength between the cavity field and the two-level atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi, Y.L., Huang, Y.C., Wu, J.X., et al.: Lossless Kerr-phase gate in a quantum-well system via tunneling interference effect for weak fields. Phys. Rev. A. 91, 063838 (2015)

    ADS  Google Scholar 

  2. Chu, S.: Cold atoms and quantum control. Nature. 416, 206–210 (2002)

    ADS  Google Scholar 

  3. Vedral, V.V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A. 54, 147 (1996)

    ADS  MathSciNet  Google Scholar 

  4. Scherer, A., Sanders, B.C., Tittel, W.: Long-distance practical quantum key distribution by entanglement swapping. Opt. Express. 19, 3004 (2011)

    ADS  Google Scholar 

  5. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A. 61, 052304 (2000)

    ADS  Google Scholar 

  6. James, D.F.V.: Quantum computation and quantum information. Math. Struct. Comp. Sci. 17, 1115 (2001)

    MathSciNet  Google Scholar 

  7. Jennewein, T., Barbieri, M., White, A.G.: Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis. J. Mod. Optic. 58, 276–287 (2011)

    ADS  MATH  Google Scholar 

  8. Kiraz, A., Atatüre, M., Imamo Lu, A.: Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing. Phys. Rev. A. 69, 032305 (2004)

    ADS  Google Scholar 

  9. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics. 3, 706–714 (2009)

    ADS  Google Scholar 

  10. Appel, J., Figueroa, E., Korystov, D., et al.: Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008)

    ADS  Google Scholar 

  11. Nicolas, A., Veissier, L., Giner, L., et al.: A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics. 8, 234–238 (2014)

    ADS  Google Scholar 

  12. Bao, X.H., Reingruber, A., Dietrich, P., et al.: Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517–521 (2012)

    Google Scholar 

  13. Giovannetti, V.: Quantum-enhanced measurements: beating the standard quantum limit. Sci. 306, 1330–1336 (2004)

    ADS  Google Scholar 

  14. Roy, S.M., Braunstein, S.L.: Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008)

    ADS  Google Scholar 

  15. Roos, C.F., Chwalla, M., Kim, K.: ‘Designer atoms’ for quantum metrology. Nature. 443, 316–319 (2006)

    ADS  Google Scholar 

  16. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced positioning and clock synchronization. Nature. 412, 417–419 (2001)

    ADS  Google Scholar 

  17. Buluta, I., Nori, F.: Quantum simulators. Sci. 326, 108–111 (2009)

    ADS  Google Scholar 

  18. Trabesinger, A.: Quantum simulation. Nat. Phys. 8, 263 (2012)

    Google Scholar 

  19. Kwiat, P., Weinfurter, H., Herzog, T., et al.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763–4766 (1995)

    ADS  Google Scholar 

  20. Birnbaum, K.M., Boca, A., Miller, R., et al.: Photon blockade in an optical cavity with one trapped atom. Nature. 436, 87–90 (2005)

    ADS  Google Scholar 

  21. Imamo Lu, A., Schmidt, H., Woods, G., et al.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    ADS  Google Scholar 

  22. Dayan, B., Parkins, A., Aoki, T., et al.: A photon turnstile dynamically regulated by one atom. Sci. 319, 1062–1065 (2008)

    ADS  Google Scholar 

  23. Zhang, Y., Zhang, J., Yu, C., et al.: Photon statistics on the extreme entanglement. Sci. Rep. 6, 24098–24108 (2016)

    ADS  Google Scholar 

  24. Wang, D., Bai, C., Liu, S., et al.: Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A. 99, 043818 (2019)

    ADS  Google Scholar 

  25. Xie, H., Lin, G.W., Chen, X., et al.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A. 93, 063860 (2016)

    ADS  Google Scholar 

  26. Xu, X.W., Chen, A.X., Liu, Y.X.: Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A. 94, 063853 (2016)

    ADS  Google Scholar 

  27. Zhou, Y.H., Shen, H.Z., Zhang, X.Y., et al.: Zero eigenvalues of a photon blockade induced by a non-Hermitian Hamiltonian with a gain cavity. Phys. Rev. A. 97, 043819 (2018)

    ADS  Google Scholar 

  28. Sarma, B., Sarma, A.K.: Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A. 98, 013826 (2018)

    ADS  Google Scholar 

  29. Zheng, L., Yin, T., Bin, Q., et al.: Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A. 99, 013804 (2019)

    ADS  Google Scholar 

  30. Liu, Y.L., Liu, Z.P., Zhang, J.: Coherent-feedback-induced controllable optical bistability and photon blockade. J. Phys. B: At. Mol. Opt. 48, 105501 (2015)

    Google Scholar 

  31. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., et al.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)

    ADS  Google Scholar 

  32. Liu, Y.X., Miranowicz, A., Nori, F., et al.: From blockade to transparency: controllable photon transmission through a circuit-QED system. Phys. Rev. A. 89, 1216–1221 (2014)

    Google Scholar 

  33. Reinhard, A., Volz, T., Winger, M., et al.: Strongly correlated photons on a chip. Nat. Photonics. 6, 93–96 (2012)

    ADS  Google Scholar 

  34. Tang, J., Geng, W., Xu, X., et al.: Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 5, 9252–9258 (2015)

    ADS  Google Scholar 

  35. Faraon, A., Fushman, I., Englund, D., et al.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008)

    Google Scholar 

  36. Zhang, W., Yu, Z., Liu, Y., et al.: Optimal photon antibunching in a quantum-dot-bimodal-cavity system. Phys. Rev. A. 89, 043832 (2014)

    ADS  Google Scholar 

  37. Lang, C., Bozyigit, D., Eichler, C., et al.: Observation of resonant photon blockade at microwave frequencies using correlation function measurements. Phys. Rev. Lett. 106, 243601 (2011)

    ADS  Google Scholar 

  38. Hamsen, C., Tolazzi, K., Wilk, T., et al.: Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 118, 133604 (2017)

    ADS  Google Scholar 

  39. Liu, Y.C., Luan, X., Li, H.K., et al.: Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014)

    ADS  Google Scholar 

  40. Liu, Y.C., Xiao, Y.F., Luan, X., et al.: Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Phys. Rev. A. 91(3), 033818 (2015)

    ADS  Google Scholar 

  41. Chen, H.J.: Auxiliary-cavity-assisted vacuum rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity. Photonics Res. 6, 1171–1176 (2018)

    Google Scholar 

  42. Feng, J.S., Tan, L., Gu, H.Q., et al.: Auxiliary-cavity-assisted ground-state cooling of optically levitated nanosphere in the unresolved-sideband regime. Phys. Rev. A. 96, 063818 (2017)

    ADS  Google Scholar 

  43. Chen, H.J., Yang, J.Y., Wu, H.W., et al.: Auxiliary cavity enhanced mode splitting and ground-state cooling of mechanical resonator in hybrid optomechanical system. E. Phys. J. D. 73, 206–215 (2019)

    ADS  Google Scholar 

  44. Liu, Y.L., Liu, Y.X.: Energy localization and ground-state cooling of mechanical resonator from room temperature in optomechanics using a gain cavity. Phys. Rev. A. 96, 023812 (2016)

    ADS  Google Scholar 

  45. Guo, Y.J., Li, K., Nie, W.J., et al.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A. 90, 053841 (2014)

    ADS  Google Scholar 

  46. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 61368002), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Liao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Wen, J. & Deng, W. Photon Blockade in a Hybrid Double-Cavity QED System. Int J Theor Phys 59, 1966–1977 (2020). https://doi.org/10.1007/s10773-020-04469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04469-2

Keywords

Navigation