Skip to main content
Log in

Quantum Blind Signature Scheme Based on Quantum Walk

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum walks have been widely used in quantum computing and quantum simulation, and can be applied for quantum teleportation. In this paper, a quantum blind signature scheme with quantum walk-based teleportation is proposed. The sender Alice encodes the message into quantum states and divides the encrypted information into two qubit strings. Alice teleports them separately to the signer Charlie and the verifier Bob by quantum walks. Charlie accepts Alice’s request and uses Pauli operation to generate the quantum blind signatures, then sends the signatures to Bob. Bob measures two quantum messages in hands to complete verification of Charlie’s signature. In this protocol, the messages to be signed are ingeniously blinded and prepared in single particle states, the teleportation of particle states is achieved by quantum walks. Security analysis shows that the scheme can not only resist the repudiation of the signer and denial of the verifier, but also detect the forgery of the attacker, which can be widely applied in e-commerce or e-payment system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Press, New directions in cryptography (1976)

  2. Merkle, R.C.: A Certified Digital Signature. Conference on the Theory and Application of Cryptology. Springer, New York (1989)

    Google Scholar 

  3. Yen, S.M., Laih, C.S.: New digital signature scheme based on discrete logarithm. Electron. Lett. 29(12), 1120–1121 (1993)

    ADS  Google Scholar 

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Shor, P.: Algorithms for quantum computation. Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Scienece (1994)

  6. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032 (2001)

  7. Barnum, H., Crepeau, C,. Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science (FOCS ‘02), 10 pages (2002)

  8. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A. 65(4), 042312 (2002)

    ADS  Google Scholar 

  9. Shi, R.H., Ding, W.T., Shi, J.J.: Arbitrated quantum signature with Hamiltonian algorithm based on blind quantum computation. Int. J. Theor. Phys. 57, 1961–1973 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yan, L.L., Chang, Y., Zhang, S.B., et al.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56(2), 634–642 (2017)

    MATH  Google Scholar 

  11. Yan, L.L., Sun, Y.H., Chang, Y., et al.: Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 17(11), 315 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Chaum, D., Rivest, R., et al.: Blind signatures for untraceable payments. Advances in Cryptology. 199–203 (1983)

  13. Wen, X., Chen, Y., Fang, J.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Wen, X., Niu, X., Ji, L., et al.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)

    ADS  Google Scholar 

  15. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chinese Physics B. 06, 70–74 (2010)

    Google Scholar 

  16. Shi, J.J., Shi, R.H., Guo, Y., et al.: Batch proxy quantum blind signature scheme. Sci. China (Inf. Sci.). 05, 202–210 (2013)

    MathSciNet  Google Scholar 

  17. Liang, J.W., Liu, X.S., Shi, J.J., et al.: Multiparty Quantum Blind Signature Scheme Based on Graph States. Int. J. Theor. Phys. 57(5), 2404–2414 (2018)

  18. Cao, H.J., Yu, Y.F., et al.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54(4), 1325–1333 (2015)

  19. Lou, X., Chen, Z., Guo, Y.: A weak quantum blind signature with entanglement permutation. Int. J. Theor. Phys. 54(9), 3283–3292 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Tian, J.H.: A quantum multi-proxy blind signature scheme based on genuine four-Qubit entangled state. Int. J. Theor. Phys. 55(2), 809–816 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Yan, L.L., Chang, Y., Zhang, S.B., et al.: A quantum multi-proxy weak blind signature scheme based on entanglement swapping. Int. J. Theor. Phys. 56(2), 634–642 (2017)

    MATH  Google Scholar 

  22. Li, W., Shi, J.J., Shi, R.H., et al.: Blind quantum signature with controlled four-particle cluster states. Int. J. Theor. Phys. 56, 1–9 (2017)

    MATH  Google Scholar 

  23. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A. 48(2), 1687–1690 (1993)

    ADS  Google Scholar 

  24. Ambainis, A., Bachy, E., Nayakz, A., et al.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC01), 37–49 (2001)

  25. Aharonov, D., Ambainis, A., Kempe, J., et al.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing (STOC01), 50–59 (2001)

  26. Du, J., Li, H., Xu, X., et al.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A. 67(4), 042316 (2003)

    ADS  Google Scholar 

  27. Di, T., Hillery, M., Zubairy, M.S.: Cavity QED-based quantum walk. Phys. Rev. A. 70(3), 032304 (2004)

    ADS  Google Scholar 

  28. Eckert, K., Mompart, J., Birkl, G., et al.: One- and two-dimensional quantum walks in arrays of optical traps. Phys. Rev. A. 72(1), 573–573 (2005)

    Google Scholar 

  29. Zou, X., Dong, Y., Guo, G.: Optical implementation of one-dimensional quantum random walks using orbital angular momentum of a single photon. New J. Phys. 8, (2006)

  30. Perets, H.B., Lahini, Y., Pozzi, F., et al.: Realization of quantum walks with negligible Decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 38–41 (2008)

    Google Scholar 

  31. Bian, Z.H., Li, J., Zhan, X., et al.: Experimental implementation of a quantum walk on a circle with single photons. Phys. Rev. A. 95(5), 052338 (2017)

    ADS  Google Scholar 

  32. Tang, H., Lin, X.F., Feng, Z., et al.: Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4(5), eaat3174 (2018)

    ADS  Google Scholar 

  33. Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16(9), 221 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Shang, Y., Wang, Y., Li, M., et al.: Quantum communication protocols by quantum walks with two coins. EPL (Europhysics Letters) (2018)

  35. Childs, A.M.: On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294(2), 581–603 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Shikano, Y.: From discrete time quantum walk to continuous time quantum walk in limit distribution. J. Comput. Theor. Nanosci. 10(7), 1558–1570 (2013)

    Google Scholar 

  37. Shi, J.J., Chen, H., Zhou, F., et al.: Quantum blind signature scheme with cluster states based on quantum walk cryptosystem. Int. J. Theor. Phys. 58(4), 1337–1349 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Feng, Y., Shi, R., Shi, J., et al.: Arbitrated quantum signature scheme with quantum walk-based teleportation. Quantum Inf. Process. 18(5), 154 (2019)

    ADS  MathSciNet  Google Scholar 

  39. Feng, Y.Y., Shi, R.H., Shi, J.J., et al.: Arbitrated quantum signature scheme based on quantum walks. Acta Phys. Sin. 68(12), 120302 (2019)

    Google Scholar 

  40. Xue, P., Zhang, R., Qin, H., et al.: Experimental quantum-walk revival with a time-dependent coin. Phys. Rev. Lett. 114(14), 140502 (2015)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.61572086, No.61402058), the Key Research and Development Project of Sichuan Province (No. 20ZDYF2324, No. 2019ZYD027, No. 2018TJPT0012), the Innovation Team of Quantum Security Communication of Sichuan Province (No.17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643), the Application Foundation Project of Sichuan Province(No.2017JY0168), the Science and Technology Support Project of Sichuan Province (No.2018GZ0204, No.2016FZ0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Chang, Y., Zhang, SB. et al. Quantum Blind Signature Scheme Based on Quantum Walk. Int J Theor Phys 59, 2059–2073 (2020). https://doi.org/10.1007/s10773-020-04478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04478-1

Keywords

Navigation