Skip to main content
Log in

Examination of the Delamination of a Stitched Laminated Composite with Experimental and Numerical Analysis Using Mode I Interlaminar

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

To examine the crack propagation in quasi-brittle materials, cohesive models have been suggested by the works of researcher. They treat the existence of a process zone at the crack tip, with a suitable constitutive law, linking the tensile normal stress T and the relative displacement among the two crack edges. In this paper, we employed the cohesive model which examines the mode I interlaminar fracture into stitched reinforced composite laminates. The test configuration that we used in this study was a stitched reinforced double cantilever beam samples. A bilinear damage-rate-dependent cohesive traction–separation law is implemented to design the woven composite fracture and discrete nonlinear spring elements to characterize the stitches influence, its advantages and disadvantages. A novel macroscopic law adopted from a 1D micromechanical-stitching model is invented to model the stitches effect along the interface. The numerical simulations of double cantilever beam test with the present model present a significant agreement compared to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

(εy, σy), (εr, σr):

Yield coordinates and failure coordinates

δ :

Equivalent displacement

\(\delta_{0}^{\text{fibre}}\) :

Elongation of the fiber before loosening

δ 0 :

The beginning of displacement jump

δ f :

The final displacement jump

Δ i :

Components displacement jump vector

\(\varDelta_{i}^{0}\) :

Pure mode i onset displacements jumps

G c :

Critical energy release rate

G i :

Energy release rate in mode i

G ic :

The critical energy release rate for mode i (i = I, II, III)

G ii :

Initial energy release rate in mode i (i = I, II, III)

J :

Rice integral

ks and kn :

Shear and tensile stiffness

Kαc (α= I, II, III):

Critical stress intensity factor relating to the cracking mode α

Kα (α= I, II, III):

Stress intensity factor relating to the cracking mode α

s :

Standardized time variable

S(0):

Displacement of spring

t i :

Constraints vector components

t :

Vector of interfacial constraints

t global :

Represents the vector of the constraints presented in the global coordinate system

t local :

Vector of the constraints written in the local coordinate system (median plane)

Δ :

The displacement jump vector

References

  1. Nachtane, M.; Tarfaoui, M.; Saifaoui, D.; El Moumen, A.; Hassoon, O.H.; Benyahia, H.: Evaluation of durability of composite materials applied to renewable marine energy: case of ducted tidal turbine. Energy Rep. 4, 31–40 (2018)

    Article  Google Scholar 

  2. Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D.: Simulation of mechanical behavior and damage of a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 25(2), 237–254 (2018)

    Article  Google Scholar 

  3. El Moumen, A.; Tarfaoui, M.; Lafdi, K.: Computational homogenization of mechanical properties for laminate composites reinforced with thin film made of carbon nanotubes. Appl. Compos. Mater. 25(3), 569–588 (2018)

    Article  Google Scholar 

  4. Benyahia, H.; Tarfaoui, M.; El Moumen, A.; Ouinas, D.; Hassoon, O.H.: Mechanical properties of offshoring polymer composite pipes at various temperatures. Compos. Part B Eng. 152, 231–240 (2018)

    Article  Google Scholar 

  5. Nachtane, M.; Tarfaoui, M.; El Moumen, A.; Saifaoui, D.: Numerical investigation of damage progressive in composite tidal turbine for renewable marine energy. IRSEC, 559-563 IEEE (2016)

  6. El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.: Experimental study and numerical modelling of low velocity impact on laminated composite reinforced with thin film made of carbon nanotubes. Appl. Compos. Mater. 25, 309–320 (2018)

    Article  Google Scholar 

  7. Tarfaoui, M.; Choukri, S.; Nême, A.: Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings. Compos. Sci. Technol. 68(2), 477–485 (2008)

    Article  Google Scholar 

  8. Hassoon, O.H.; Tarfaoui, M.; Alaoui, A.E.M.; El Moumen, A.: Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads. Compos. Struct. 178, 297–307 (2017)

    Article  Google Scholar 

  9. Hassoon, O.H.; Tarfaoui, M.; Alaoui, A.E.M.; El Moumen, A.: Mechanical behavior of composite structures subjected to constant slamming impact velocity: an experimental and numerical investigation. IJMS 144, 618–627 (2018)

    Google Scholar 

  10. Hassoon, O.H.; Tarfaoui, M.; El Moumen, A.: Progressive damage modeling in laminate composites under slamming impact water for naval applications. Compos. Struct. 167, 178–190 (2017)

    Article  Google Scholar 

  11. Sassi, S.; Tarfaoui, M.; Yahia, H.B.: An investigation of in-plane dynamic behavior of adhesively-bonded composite joints under dynamic compression at high strain rate. Compos. Struct. 191, 168–179 (2018)

    Article  Google Scholar 

  12. Tong, L.; Mouritz, A.P.; Bannister, M.K.: 3D fibre reinforced polymer composites. Elsevier, Amsterdam (2002)

    Google Scholar 

  13. Byun, J.H.; Song, S.W.; Lee, C.H.; Um, M.K.; Hwang, B.S.: Impact properties of laminated composites with stitching fibers. Compos. Struct. 76(1–2), 21–27 (2006)

    Article  Google Scholar 

  14. Mouritz, A.P.; Jain, L.K.: Further validation of the Jain and Mai models for interlaminar fracture of stitched composites. Compos. Sci. Technol. 59(11), 1653–1662 (1999)

    Article  Google Scholar 

  15. Shah, O.R.; Tarfaoui, M.: Determination of mode I & II strain energy release rates in composite foam core sandwiches. An experimental study of the composite foam core interfacial fracture resistance. Compos. B Eng. 111, 134–142 (2017)

    Article  Google Scholar 

  16. Koh, T.M.; Isa, M.D.; Feih, S.; Mouritz, A.P.: Damage tolerance of z-pinned composite joints. In: 28th International Congress of the Aeronautical Sciences (ICAS), pp. 23–28. Brisbane (2012)

  17. Arbaoui, J.; Tarfaoui, M.; Alaoui, A.E.M.: Mechanical behavior and damage kinetics of woven E-glass/vinylester laminate composites under high strain rate dynamic compressive loading: experimental and numerical investigation. Int. J. Impact Eng 87, 44–54 (2016)

    Article  Google Scholar 

  18. Arbaoui, J.; Tarfaoui, M.; Bouery, C.; El Malki Alaoui, A.: Comparative study of mechanical properties and damage kinetics of two- and three-dimensional woven composites under high-strain rate dynamic compressive loading. Int. J. Damage Mech. 25(6), 878–899 (2016)

    Article  Google Scholar 

  19. Greenhalgh, E.; Hiley, M.: The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures. Compos. Part A Appl. Sci. J. 34(2), 151–161 (2003)

    Article  Google Scholar 

  20. Reeder, J.R.: An evaluation of mixed-mode delamination failure criteria. Technical Report. NASA Langley Research Center, Hampton, VA, United States, 52p (1992)

  21. ASTM, D.: 5528-94a, Standard test method for Mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. In: Annual Book of ASTM Standards, 15 (1994)

  22. Jain, L.K.; Dransfield, K.A.; Mai, Y.W.: On the effects of stitching in CFRPs—II. Mode II delamination toughness. Compos. Sci. Technol. 58(6), 829–837 (1998)

    Article  Google Scholar 

  23. Chen, L.; Ifju, P.G.; Sankar, B.V.: A novel double cantilever beam test for stitched composite laminates. J. Compos. Mater. 35(13), 1137–1149 (2001)

    Article  Google Scholar 

  24. Aymerich, F.; Francesconi, L.: Damage mechanisms in thin stitched laminates subjected to low-velocity impact. Procedia Eng. 88, 133–140 (2014)

    Article  Google Scholar 

  25. Hamitouche, L.; Tarfaoui, M.; Vautrin, A.: Modélisation du délaminage par la méthode de la zone cohésive et problèmes d’instabilité. C. R. JNC (2009)

  26. Hamitouche, L.; Tarfaoui, M.; Vautrin, A.: An interface debonding law subject to viscous regularization for avoiding instability: application to the delamination problems. Engineering 75(10), 3084–3100 (2008)

    Google Scholar 

  27. Zhao, D.; Wang, Y.: Mode III fracture behavior of laminated composite with edge crack in torsion. Theor. Appl. Fract Mech. 29(2), 109–123 (1998)

    Article  Google Scholar 

  28. Liu, H.Y.; Zhang, X.; Mai, Y.W.; Diao, X.X.: On steady-state fibre pull-out II computer simulation. Compos. Sci. Technol. 59(15), 2191–2199 (1999)

    Article  Google Scholar 

  29. Morton, J.; Groves, G.W.: The cracking of composites consisting of discontinuous ductile fibres in a brittle matrix—effect of fibre orientation. J. Mater. Sci. Lett. 9(9), 1436–1445 (1974)

    Article  Google Scholar 

  30. Mouritz, A.P.; Cox, B.N.: A mechanistic approach to the properties of stitched laminates. Compos. Part A Part A Appl. Sci. 31(1), 1–27 (2000)

    Article  Google Scholar 

  31. Ghasemnejad, H.: Interlaminar fracture toughness of stitched FRP composites. Comput. Math. Appl. pp. 93–96

  32. Ravandi, M.; Teo, W.S.; Tran, L.Q.N.; Yong, M.S.; Tay, T.E.: The effects of through-the-thickness stitching on the mode I interlaminar fracture toughness of flax/epoxy composite laminates. Mater. Des. 109, 659–669 (2016)

    Article  Google Scholar 

  33. ABAQUS 2004 V6.5. User’s manual. Rising Sun Mills, USA: ABAQUS Inc

  34. Geubelle, P.H.; Baylor, J.S.: Impact-induced delamination of composites: a 2D simulation. Compos. B Eng. 29(5), 589–602 (1998)

    Article  Google Scholar 

  35. Mazars, J.: Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse de docteur ES Sciences présentée à l’Université Pierre et Marie Curie-Paris 6 (1984)

  36. Turon, A.; Dávila, C.G.; Camanho, P.P.; Costa, J.: An engineering solution for using coarse meshes in the simulation of delamination with cohesive zone models. Technical Report. NASA Langley Research Center; Hampton, VA, United States, 26p (2005)

  37. Dirand, X.: Etude des interfaces et interphases verre/résine vinylester. Doctoral dissertation, Mulhouse (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostapha Tarfaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarfaoui, M., Hamitouche, L., Khammassi, S. et al. Examination of the Delamination of a Stitched Laminated Composite with Experimental and Numerical Analysis Using Mode I Interlaminar. Arab J Sci Eng 45, 5873–5882 (2020). https://doi.org/10.1007/s13369-020-04599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04599-z

Keywords

Navigation