Skip to main content
Log in

Strontium Isotope Composition in Limestones of the Dal’nyaya Taiga Group in the Patom Basin: Vendian Reference Section of Siberia

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

New data on the 87Sr/86Sr ratio variations in carbonate rocks of the Dal’nyaya Taiga Group in the Vendian reference section (Ura Uplift, Central Siberia) are presented. The 87Sr/86Sr variations correlate with the sequence-stratigraphic scheme reflecting evolution of the paleobasin, δ13C variations, and paleontological data. Limestones with a high (>1050 µg/g) Sr concentration, which do not show any signs of alteration of the Sr isotope system, were used for reconstructing the secular 87Sr/86Sr variations. Increase in the 87Sr/86Sr ratio from 0.70755 to 0.70823 complicated by subordinate fluctuations was established in seawater during the accumulation of the Dal’nyaya Taiga Group carbonate rocks. Duration of the postglacial deposition of the Dal’nyaya Taiga Group is estimated at no less than 14–15 Ma. Secular variations of the 87Sr/86Sr ratio measured in the Dal’nyaya Taiga Group limestones are similar to changes of this ratio after the Marinoan glacial period. The Sr and C isotope correlations suggest a prolonged hiatus between the Dal’nyaya Taiga and Zhuya groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bobrovskiy, I., Hope, J., Krasnova, A., et al., Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis, Nature Ecol. Evol., 2018, vol. 2, no. 3, pp. 437‒440.

    Article  Google Scholar 

  2. Bold, U., Smith, E.F., Rooney, A.D., et al., Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: the backbone for Cryogenian and early Ediacaran chemostratigraphic records, Am. J. Sci., 2016, vol. 316, no. 1, pp. 1‒63.

    Article  Google Scholar 

  3. Burns, S.J., Haudenschild, U., and Matter, A., The strontium isotopic composition of carbonates from the late Precambrian (560––540 Ma) Huqf Group of Oman, Chem. Geol., 1994, vol. 111, pp. 269‒282.

    Article  Google Scholar 

  4. Calver, C.R., Crowley, J.L., Wingate, M.T.D., et al., Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia, Geology, 2013, vol. 41, no. 10, pp. 1127‒1130.

    Article  Google Scholar 

  5. Chumakov, N.M., Pokrovskii, B.G., and Melezhik, V.A., Geological history of the Late Precambrian Patom Supergroup (Central Siberia), Dokl. Earth Sci., 2007, vol. 413A, no. 3, pp. 343‒346.

    Article  Google Scholar 

  6. Chumakov, N.M., Kapitonov, I.N., Semikhatov, M.A., et al., Vendian age of the upper part of the Patom Complex in Middle Siberia: U/Pb LA-ICPMS dates of detrital zircons from the Nikol’skoe and Zherba formations, Stratigr. Geol. Correl., 2011a, vol. 19, no. 2, pp. 233‒237.

    Article  Google Scholar 

  7. Chumakov, N.M., Linnemann, U., Khofmann, M., and Pokrovskii, B.G., Neoproterozoic ice sheets of the Siberian Platform: U–Pb–LA-ICP-MS ages of detrital zircons from the Bol’shoi Patom Formation and the geotectonic position of its provenance, Stratigr. Geol. Correl., 2011b, vol. 19, no. 6, pp. 679‒686.

    Article  Google Scholar 

  8. Chumakov, N.M., Semikhatov, M.A., and Sergeev, V.N., Vendian reference section of southern Middle Siberia, Stratigr. Geol. Correl., 2013, vol. 21, no. 4, pp. 359–382.

    Article  Google Scholar 

  9. Condon, D., Zhu, M., Bowring, S., et al., U-Pb ages from the Neoproterozoic Doushantuo Formation, China, Science, 2005, vol. 308, pp. 95‒98.

    Article  Google Scholar 

  10. Einsele, G., Sedimentary Basins: Evolution, Facies, and Sediment Budget, Berlin: Springer, 1992.

    Book  Google Scholar 

  11. Golubkova, E.Yu., Raevskaya, E.G., and Kuznetsov, A.B., Lower Vendian microfossil assemblages of East Siberia: Significance for solving regional stratigraphic problems, Stratigr. Geol. Cortrel., 2010, vol. 18, no. 4, pp. 353‒375.

    Article  Google Scholar 

  12. Grey, K., Ediacaran palynology of Australia, Mem. Ass. Austr. Palaeont., 2005, no. 31, pp. 1‒439.

  13. Halverson, G.P., Dudás F.Ö., Maloof, A.C., and Bowring, S.A., Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 256, no. 3/4, pp. 103‒129.

    Article  Google Scholar 

  14. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., A Neoproterozoic snowball earth, Science, 1998, vol. 28, no. 5381, pp. 1342‒1346.

    Article  Google Scholar 

  15. Knoll, A., Walter, M., Narbonne, G., and Christie, BlickN., The Ediacaran Period: a new addition to the geologic time scale, Lethaia, 2006, vol. 39, no. 1, pp. 13‒30.

    Article  Google Scholar 

  16. Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., et al., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 2, pp. 120‒137.

    Article  Google Scholar 

  17. Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., et al., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb-Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51‒66.

    Article  Google Scholar 

  18. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka Formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Correl., 2014, vol. 22, no. 6, pp. 553‒575.

    Article  Google Scholar 

  19. Kuznetsov, A.B., Bekker, A., Ovchinnikova, G.V., et al., Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion, Precambrian Res., 2017, vol. 298, pp. 157‒173.

    Article  Google Scholar 

  20. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium isotope stratigraphy: Principles and state of the art, Stratigr. Geol. Correl., 2018, vol. 26, no. 4, pp. 367‒386.

    Article  Google Scholar 

  21. Leonov, M.V. and Rud’ko, S.V., Finding of the Ediacaran–Vendian fossils in the Far Taiga deposits, Patom Highlands, Stratigr. Geol. Correl., 2012, vol. 20, no. 5, pp. 497‒500.

    Article  Google Scholar 

  22. Liu, P., Xiao, S., Yin, C., et al., Ediacaran acanthomorphic acritarchs and other microfossils from cherts nodules of the Upper Doushantuo Formation in the Yangtze Gorges area, South China, Paleontol. Mem., 2014, vol. 72, pp. 1‒139.

    Google Scholar 

  23. Macdonald, F.A., Strauss, J.V., Sperling, E.A., et al., The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada, Chem. Geol., 2013, vol. 362, pp. 250‒272.

    Article  Google Scholar 

  24. McArthur, J.M., Howarth, R.J., and Bailey, T.R., Strontium isotope stratigraphy LOWESS Version 3. Best-fit line to the marine Sr isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age, J. Geol., 2001, vol. 109, no. 2, pp. 155‒169.

    Article  Google Scholar 

  25. Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., et al., Constraints on 87Sr/86Sr of Late Ediacaran seawater: insight from Siberian high-Sr limestones, J. Geol. Soc., London, 2009, vol. 166, pp. 183–191.

    Article  Google Scholar 

  26. Melezhik, V.A., Ihlen, P.M., Kuznetsov, A.B., et al., Pre-Sturtian (800–730 Ma) depositional age of carbonates in sedimentary sequences hosting stratiform iron ores in the Uppermost Allochthon of the Norwegian Caledonides: a chemostratigraphic approach, Precambrian. Res., 2015, vol. 261, pp. 272‒299.

    Article  Google Scholar 

  27. Moczydlowska, M. and Nagovitsin, K., Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia, Precambrian Res., 2012, vol. 198-199, pp. 1‒24.

    Article  Google Scholar 

  28. Narbonne, G.M., Xiao, S., and Shields, G.A., The Ediacaran Period, in The Geologic Time Scale, Gradstein, F.M., Ed., Oxford: Elsevier, 2012, pp. 413–435.

    Google Scholar 

  29. Petrov, P.Yu., Postglacial deposits of the Dal’nyaya Taiga Group: Early Vendian in the Ura Uplift, Siberia. Communication 1. Barakun Formation, Lithol. Miner. Resour., 2018a, no. 5, pp. 417‒429.

  30. Petrov, P.Yu., Postglacial deposits of the Dal’nyaya Taiga Group: Early Vendian in the Ura Uplift, Siberia. Communication 2. Ura and Kalancha formations and history of the basin, Litol. Miner. Resour., 2018b, no. 6, pp. 473‒488.

  31. Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Litol. Miner. Resour., 2006, no. 5, pp. 450‒474.

  32. Pokrovsky, B.G., Chumakov, N.M., Melezhik, V.A., and Bujakaite, M.I., Geochemical properties of Neoproterozoic “cap dolomites” in the Patom paleobasin and problem of their genesis, Lithol.Miner. Resour., 2010, no. 6, pp. 577‒592.

  33. Powerman, V., Shatsillo, A., Chumakov, N., et al., Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia, Precambrian Res., 2015, vol. 267, pp. 39‒71.

    Article  Google Scholar 

  34. Prave, A.R., Condon, D.J., Hoffmann, K.H., et al., Duration and nature of the end-Cryogenian (Marinoan) glaciation, Geology, 2016, vol. 44, no. 8, pp. 631‒634.

    Article  Google Scholar 

  35. Pu, J.P., Bowring, S.A., Ramezani, J., et al., Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota, Geology, 2016, vol. 44, no. 11, p. 955.

    Article  Google Scholar 

  36. Rooney, A.D., Strauss, J.V., Brandon, A.D., and Macdonald, F.A., A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations, Geology, 2015, vol. 43, no. 5, pp. 459‒462.

    Article  Google Scholar 

  37. Rud’o, S.V., Kuznetsov, A.B., and Piskunov, V.K., Sr isotope chemostratigraphy of Upper Jurassic carbonate rocks in the Demerdzhi Plateau (Crimean Mountains), Stratigr. Geol. Correl., 2014, vol. 22, no. 5, pp. 494‒506.

    Article  Google Scholar 

  38. Rud’ko, S.V., Petrov, P.Yu., Kuznetsov, A.B., et al., Refined δ13C trend of the Dal’nyaya Taiga Series of the Ura Uplift (Vendian, southern part of Middle Siberia), Dokl. Earth Sci., 2017, vol. 477, no. 2, pp. 1449‒1453.

    Article  Google Scholar 

  39. Sawaki, Y., Ohno, T., Tahata, M., et al., The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China, Precambrian Res., 2010, vol. 176, nos (1-4), pp. 46‒64.

  40. Semikhatov, M.A., Ovchinnikova, G.V., Gorokhov, I.M., et al., Pb–Pb isochron age and Sr-isotopic signature of the Upper Yudoma Carbonate sediments (Vendian of the Yudoma–Maya Trough, Eastern Siberia), Dokl. Earth Sci., 2003, vol. 393, no. 8, pp. 1093‒1097.

    Google Scholar 

  41. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., et al., The Yudoma Group of stratotype area: C-isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 435‒459.

    Google Scholar 

  42. Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: The evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568‒579.

    Article  Google Scholar 

  43. Sergeev, V.N., Knoll, A.H., and Vorob’eva, N.G., Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance, J. Paleontol., 2011, vol. 85, no. 5, pp. 987‒1011.

    Article  Google Scholar 

  44. Tahata, M., Ueno, Y., Ishikawa, T., et al., Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: decoding temperature and environmental changes through the Ediacaran, Gondwana Res, 2013, vol. 23, no. 1, pp. 333‒353.

    Article  Google Scholar 

  45. Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, nos. 1–3, pp. 59‒88.

    Article  Google Scholar 

  46. Vinogradov, V.I., Pichugin, N.P., Bykhover, V.N., et al., Isotopic features and dating of epigenetic alterations of Upper Precambrian deposits of the Ura Uplift, Lithol. Miner. Resour., 1996, no. 1, pp. 60‒69.

  47. Wierzbowski, H., Anczkiewicz, R., Pawlak, J., et al., Revised Middle–Upper Jurassic strontium isotope stratigraphy, Chem. Geol., 2017, vol. 466, pp. 239‒255.

    Article  Google Scholar 

  48. Williams, G.E. and Schmidt, P.W., Shuram-Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean’s meridional overturning circulation, Geosci. Front., 2018, vol. 9, no. 2, pp. 391‒402.

    Article  Google Scholar 

  49. Xiao, S., Zhou, C., Liu, P., et al., Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng’an (South China) and their implications for biostratigraphic correlation, J. Paleontol., 2014, vol. 88, no. 1, pp. 1‒67.

    Article  Google Scholar 

  50. Yudovich, Ya.E., Maidal’, T.V., and Ivanova, T.I., Geokhimiya strontsiya v karbonatnykh otlozheniyakh (Geochemistry of Strontium in Carbonate Rocks), Leningrad: Nauka, 1980.

  51. Zhou, C., Huyskens, M.H., Lang, X., et al., Calibrating the terminations of Cryogenian global glaciations, Geology, 2019, vol. 47, no. 3, pp. 251‒254.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Shatsillo, B.G. Pokrovsky, and N.M. Chumakov for the discussion that inspired us to undertake this work. We also thank the anonymous peers for valuable remarks.

Funding

Isotope and geochemical studies, as well as preparation of the paper, were supported by the Russian Science Foundation (project no. 18-77-00059). Expedition works for the collection of field materials were supported by the Russian Foundation for Basic Research (project nos. 17-05-00021 and 19-05-00155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rud’ko.

Additional information

Translated by D. Sakya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rud’ko, S.V., Kuznetsov, A.B. & Petrov, P.Y. Strontium Isotope Composition in Limestones of the Dal’nyaya Taiga Group in the Patom Basin: Vendian Reference Section of Siberia. Lithol Miner Resour 55, 206–217 (2020). https://doi.org/10.1134/S0024490220030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490220030050

Keywords:

Navigation