Skip to main content
Log in

Study on the Formability of Magnesium Alloy Sheets in the Incremental Forming Process with External Heating Sources

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Magnesium alloy sheets have low formability at room temperature due to their hexagonal closed-packed microstructures. In order to increase the formability of magnesium alloy sheets (AZ31) and fabricate a complex geometry, an incremental forming process with external heat sources such as the near-infrared heater and heated tools can be employed. Cylindrical cup shapes and Pyramidal cup shapes with various angles were fabricated to find out the formability limits. The maximum formable angle of the cylindrical cup shape increased from 20° at the room temperature to 72° by employing the incremental forming process using two external heat sources. It means that the temperature of AZ31 was increased to a proper forming temperature very efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kleiner, M., Geiger, M., & Klaus, A. (2003). Manufacturing of lightweight components by metal forming. CIRP Annals,52(2), 521–542. https://doi.org/10.1016/S0007-8506(07)60202-9.

    Article  Google Scholar 

  2. Doege, E., & Dröder, K. (2001). Sheet metal forming of magnesium wrought alloys—Formability and process technology. Journal of Materials Processing Technology,115(1), 14–19. https://doi.org/10.1016/S0924-0136(01)00760-9.

    Article  Google Scholar 

  3. Yang, D. Y., Bambach, M., Cao, J., Duflou, J. R., Groche, P., Kuboki, T., et al. (2018). Flexibility in metal forming. CIRP Annals,67(2), 743–765. https://doi.org/10.1016/j.cirp.2018.05.004.

    Article  Google Scholar 

  4. Lee, C. W., Seong, D. Y., & Yang, D. Y. (2010). Incremental forming process of AZ31 sheet using external heat sources. In: 2010 Spring Proceedings of the Korean society for technology plasticity conference.

  5. Toros, S., Ozturk, F., & Kacar, I. (2008). Review of warm forming of aluminum–magnesium alloys. Journal of Materials Processing Technology,207(1), 1–12. https://doi.org/10.1016/j.jmatprotec.2008.03.057.

    Article  Google Scholar 

  6. Zhang, S. H., Zhang, K., Xu, Y. C., Wang, Z. T., Xu, Y., & Wang, Z. G. (2007). Deep-drawing of magnesium alloy sheets at warm temperatures. Journal of Materials Processing Technology,185(1), 147–151. https://doi.org/10.1016/j.jmatprotec.2006.03.150.

    Article  Google Scholar 

  7. Zhang, K. F., Yin, D. L., & Wu, D. Z. (2006). Formability of AZ31 magnesium alloy sheets at warm working conditions. International Journal of Machine Tools and Manufacture,46(11), 1276–1280. https://doi.org/10.1016/j.ijmachtools.2006.01.014.

    Article  Google Scholar 

  8. Wang, L., Huang, G., Zhang, H., Wang, Y., & Yin, L. (2013). Evolution of springback and neutral layer of AZ31B magnesium alloy V-bending under warm forming conditions. Journal of Materials Processing Technology,213(6), 844–850. https://doi.org/10.1016/j.jmatprotec.2013.01.005.

    Article  Google Scholar 

  9. Park, D.-H., & Kwon, H.-H. (2015). Development of warm forming parts for automotive body dash panel using AZ31B magnesium alloy sheets. International Journal of Precision Engineering and Manufacturing,16(10), 2159–2165. https://doi.org/10.1007/s12541-015-0278-8.

    Article  Google Scholar 

  10. Emmens, W. C., Sebastiani, G., & van den Boogaard, A. H. (2010). The technology of incremental sheet forming—a brief review of the history. Journal of Materials Processing Technology,210(8), 981–997. https://doi.org/10.1016/j.jmatprotec.2010.02.014.

    Article  Google Scholar 

  11. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. CIRP Annals,54(2), 88–114. https://doi.org/10.1016/S0007-8506(07)60021-3.

    Article  Google Scholar 

  12. Ambrogio, G., Filice, L., & Manco, G. L. (2008). Warm incremental forming of magnesium alloy AZ31. CIRP Annals,57(1), 257–260. https://doi.org/10.1016/j.cirp.2008.03.066.

    Article  Google Scholar 

  13. Ji, Y. H., & Park, J. J. (2008). Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology,201(1), 354–358. https://doi.org/10.1016/j.jmatprotec.2007.11.206.

    Article  Google Scholar 

  14. Duflou, J. R., Callebaut, B., Verbert, J., & De Baerdemaeker, H. (2007). Laser assisted incremental forming: formability and accuracy improvement. CIRP Annals,56(1), 273–276. https://doi.org/10.1016/j.cirp.2007.05.063.

    Article  Google Scholar 

  15. Fan, G., Gao, L., Hussain, G., & Wu, Z. (2008). Electric hot incremental forming: A novel technique. International Journal of Machine Tools and Manufacture,48(15), 1688–1692. https://doi.org/10.1016/j.ijmachtools.2008.07.010.

    Article  Google Scholar 

  16. Ambrogio, G., Filice, L., & Gagliardi, F. (2012). Formability of lightweight alloys by hot incremental sheet forming. Materials & Design,34, 501–508. https://doi.org/10.1016/j.matdes.2011.08.024.

    Article  Google Scholar 

  17. Lee, E.-H., & Kim, W.-S. (2020). Electrical–thermal–mechanical analysis of focused infrared heating Process. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00161-x.

    Article  Google Scholar 

  18. Lu, B., Chen, J., Ou, H., & Cao, J. (2013). Feature-based tool path generation approach for incremental sheet forming process. Journal of Materials Processing Technology,213(7), 1221–1233. https://doi.org/10.1016/j.jmatprotec.2013.01.023.

    Article  Google Scholar 

  19. Kim, T. J., & Yang, D. Y. (2000). Improvement of formability for the incremental sheet metal forming process. International Journal of Mechanical Sciences,42(7), 1271–1286. https://doi.org/10.1016/S0020-7403(99)00047-8.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. NRF- 2020R1C1C1014412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Whan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CW., Yang, DY. Study on the Formability of Magnesium Alloy Sheets in the Incremental Forming Process with External Heating Sources. Int. J. Precis. Eng. Manuf. 21, 1519–1527 (2020). https://doi.org/10.1007/s12541-020-00352-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00352-6

Keywords

Navigation