Skip to main content
Log in

Chemical and Isotopic Composition Measurements on Atmospheric Probes Exploring Uranus and Neptune

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

So far no designated mission to either of the two ice giants, Uranus and Neptune, exists. Almost all of our gathered information on these planets comes from remote sensing. In recent years, NASA and ESA have started planning for future mission to Uranus and Neptune, with both agencies focusing their attention on orbiters and atmospheric probes. Whereas information provided by remote sensing is undoubtedly highly valuable, remote sensing of planetary atmospheres also presents some shortcomings, most of which can be overcome by mass spectrometers. In most studies presented to date a mass spectrometer experiment is thus a favored science instrument for in situ composition measurements on an atmospheric probe. Mass spectrometric measurements can provide unique scientific data, i.e., sensitive and quantitative measurements of the chemical composition of the atmosphere, including isotopic, elemental, and molecular abundances. In this review paper we present the technical aspects of mass spectrometry relevant to atmospheric probes. This includes the individual components that make up mass spectrometers and possible implementation choices for each of these components. We then give an overview of mass spectrometers that were sent to space with the intent of probing planetary atmospheres, and discuss three instruments, the heritage of which is especially relevant to Uranus and Neptune probes, in detail. The main part of this paper presents the current state-of-art in mass spectrometry intended for atmospheric probe. Finally, we present a possible descent probe implementation in detail, including measurement phases and associated expected accuracies for selected species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • R. Arevalo, J. Danell, R.M. Danell, C. Gundersen, L. Hovmand, A.E. Southard, F. Tan, A. Grubisic, W.B. Brinckerhoff, S. Getty, P.R. Mahaffy, H. Cottin, C. Briois, F. Collin, C. Szopa, V. Vuitton, A. Makarov, M. Reinhardt-Szyba, Advanced Resolution Organic Molecule Analyzer (AROMA): simulations, development and initial testing of a linear ion trap-orbitrap instrument for space, in 3rd International Workshop on Instrumentation for Planetary Missions (2016)

    Google Scholar 

  • S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, O. Mousis, The Origin and Evolution of Saturn, with Exoplanet Perspective. Cambridge Planetary Science (Cambridge University Press, Cambridge, 2018), pp. 5–43. https://doi.org/10.1017/9781316227220.002

    Book  Google Scholar 

  • S.K. Atreya, M.H. Hofstadter, K. Reh, J.H. In, O. Mousis, M.H. Wong, Icy giant planet exploration: are entry probes essential? Acta Astronaut. 162, 266–274 (2019). https://doi.org/10.1016/j.actaastro.2019.06.020

    Article  ADS  Google Scholar 

  • S.K. Atreya, M.H. Hofstadter, J.H. In, O. Mousis, K. Reh, M.H. Wong, Deep atmosphere composition, structure, origin, and exploration, with particular focus on critical in situ science at the icy giants. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-0640-8

    Article  Google Scholar 

  • G. Avice, A. Belousov, K.A. Farley, S. Madzunkov, J. Simcic, D. Nikolić, M.R. Darrach, C. Sotin, High-precision measurements of krypton and xenon isotopes with a new static-mode quadrupole ion trap mass spectrometer. J. Anal. At. Spectrom. 34, 104–117 (2019). https://doi.org/10.1039/C8JA00218E

    Article  Google Scholar 

  • H. Balsiger, P. Eberhardt, J. Geiss, E. Kopp, A mass spectrometer for the simultaneous measurement of the neutral and the ion composition of the upper atmosphere. Rev. Sci. Instrum. 42(4), 475–476 (1971). https://doi.org/10.1063/1.1685134

    Article  ADS  Google Scholar 

  • H. Balsiger, K. Altwegg, P. Bochsler, P. Eberhardt, J. Fischer, S. Graf, A. Jäckel, E. Kopp, U. Langer, M. Mildner, J. Müller, T. Riesen, M. Rubin, S. Scherer, P. Wurz, S. Wüthrich, E. Arijs, S. Delanoye, J.D. Keyser, E. Neefs, D. Nevejans, H. Rème, C. Aoustin, C. Mazelle, J.L. Médale, J.A. Sauvaud, J.J. Berthelier, J.L. Bertaux, L. Duvet, J.M. Illiano, S.A. Fuselier, A.G. Ghielmetti, T. Magoncelli, E.G. Shelley, A. Korth, K. Heerlein, H. Lauche, S. Livi, A. Loose, U. Mall, B. Wilken, F. Gliem, B. Fiethe, T.I. Gombosi, B. Block, G.R. Carignan, L.A. Fisk, J.H. Waite, D.T. Young, H. Wollnik, Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 128(1), 745–801 (2007). https://doi.org/10.1007/s11214-006-8335-3

    Article  ADS  Google Scholar 

  • S. Barabash, P. Wurz, P. Brandt, M. Wieser, M. Holmström, Y. Futaana, G. Stenberg, H. Nilsson, A. Eriksson, M. Tulej, A. Vorburger, N. Thomas, C. Paranicas, D.G. Mitchell, G. Ho, B.H. Mauk, D. Haggerty, J.H. Westlake, M. Fränz, N. Krupp, E. Roussos, E. Kallio, W. Schmidt, K. Szego, S. Szalai, K. Khurana, X. Jia, C. Paty, R.F. Wimmer-Schweingruber, B. Heber, A. Kazushi, M. Grande, H. Lammer, T. Zhang, S. McKenna-Lawlor, S.M. Krimigis, T. Sarris, D. Grodent, Particle Environment Package (PEP), in European Planetary Science Congress (2013), EPSC2013–709

    Google Scholar 

  • W.H. Bennett, Radiofrequency mass spectrometer. J. Appl. Phys. 21(2), 143–149 (1950). https://doi.org/10.1063/1.1699613

    Article  ADS  Google Scholar 

  • A. Benninghoven, F.G. Rüdenauer, H.W. Werner, Secondary Ion Mass Spectrometry—Basic Concepts, Instrumental Aspects, Applications and Trends. Surface and Interface Analysis (Wiley, New York, 1987). https://doi.org/10.1002/sia.740100811

    Book  Google Scholar 

  • J.J. Berthelier, J.M. Illiano, D. Nevejans, E. Neefs, E. Arijs, N. Schoon, High resolution focal plane detector for a space-borne magnetic mass spectrometer. Int. J. Mass Spectrom. 215(1), 89–100 (2002). https://doi.org/10.1016/S1387-3806(02)00527-4

    Article  Google Scholar 

  • S.J. Bolton, A. Adriani, V. Adumitroaie, M. Allison, J. Anderson, S. Atreya, J. Bloxham, S. Brown, J.E.P. Connerney, E. DeJong, W. Folkner, D. Gautier, D. Grassi, S. Gulkis, T. Guillot, C. Hansen, W.B. Hubbard, L. Iess, A. Ingersoll, M. Janssen, J. Jorgensen, Y. Kaspi, S.M. Levin, C. Li, J. Lunine, Y. Miguel, A. Mura, G. Orton, T. Owen, M. Ravine, E. Smith, P. Steffes, E. Stone, D. Stevenson, R. Thorne, J. Waite, D. Durante, R.W. Ebert, T.K. Greathouse, V. Hue, M. Parisi, J.R. Szalay, R. Wilson, Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356(6340), 821–825 (2017). https://doi.org/10.1126/science.aal2108

    Article  ADS  Google Scholar 

  • A.P. Boss, Giant planet formation by gravitational instability. Science 276(5320), 1836–1839 (1997). www.scopus.com. Cited by :529

    Article  ADS  Google Scholar 

  • A.P. Boss, Formation of planetary-mass objects by protostellar collapse and fragmentation. Astrophys. J. 551(2 PART 2), L167–L170 (2001). www.scopus.com. Cited by :103

    Article  ADS  Google Scholar 

  • C. Briois, R. Thissen, L. Thirkell, K. Aradj, A. Bouabdellah, A. Boukrara, N. Carrasco, G. Chalumeau, O. Chapelon, F. Colin, P. Coll, H. Cottin, C. Engrand, N. Grand, J.P. Lebreton, F.R. Orthous-Daunay, C. Pennanech, C. Szopa, V. Vuitton, P. Zapf, A. Makarov, Orbitrap mass analyser for in situ characterisation of planetary environments: performance evaluation of a laboratory prototype. Planet. Space Sci. 131, 33–45 (2016). https://doi.org/10.1016/j.pss.2016.06.012

    Article  ADS  Google Scholar 

  • T.G. Brockwell, K.J. Meech, K. Pickens, J.H. Waite, G. Miller, J. Roberts, J.I. Lunine, P. Wilson, The mass spectrometer for planetary exploration (MASPEX), in 2016 IEEE Aerospace Conference (2016), pp. 1–17. https://doi.org/10.1109/AERO.2016.7500777

    Chapter  Google Scholar 

  • M.V. Buchanan, M.B. Wise, in Fourier Transform Mass Spectrometry Studies of Negative Ion Processes (Am. Chem. Soc., Washington, 1987), pp. 175–191. https://doi.org/10.1021/bk-1987-0359.ch011, Chap. 11

    Chapter  Google Scholar 

  • T. Cavalié, O. Venot, M. Yamila, L. Fletcher, P. Wurz, O. Mousis, R. Bounaceur, V. Hue, J. Leconte, M. Dobrijevic, The deep composition of Uranus and Neptune from in situ exploration and thermochemical modeling. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00677-8

    Article  Google Scholar 

  • L. Colin, Encounter with Venus: an update. Science 205(4401), 44–46 (1979). https://doi.org/10.1126/science.205.4401.44

    Article  ADS  Google Scholar 

  • R.J. Cotter, Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research (Am. Chem. Soc., Washington, 1992)

    Google Scholar 

  • M.R. Darrach, S. Madzunkov, R. Schaefer, D. Nikolic, J. Simcic, K. Richard, E. Neidholdt, M. Pilinski, A. Jaramillo-Botero, K. Farley, The Mass Analyzer for Real-time Investigation of Neutrals at Europa (MARINE), in 2015 IEEE Aerospace Conference (2015), pp. 1–13

    Google Scholar 

  • P.H. Dawson, Quadrupole Mass Spectrometry and Its Applications (Elsevier, Amsterdam, 1976). https://doi.org/10.1016/C2013-0-04436-2

    Book  Google Scholar 

  • G. Durry, A. Hauchecorne, J. Ovarlez, H. Ovarlez, I. Pouchet, V. Zeninari, B. Parvitte, In situ measurement of H2O and CH4 with telecommunication laser diodes in the lower stratosphere: dehydration and indication of a tropical air intrusion at mid-latitudes. J. Atmos. Chem. 43(3), 175–194 (2002). https://doi.org/10.1023/A:1020674208207

    Article  Google Scholar 

  • G. Durry, J. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, T. Decarpenterie, N. Amarouche, X. Liu, B. Parvitte, O. Korablev, M. Gerasimov, V. Zéninari, Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission. Appl. Phys. B 99, 339–351 (2010). https://doi.org/10.1007/s00340-010-3924-y

    Article  ADS  Google Scholar 

  • J. Foust, Europa Clipper passes key review. Space News (2019). https://spacenews.com/europa-clipper-passes-key-review/

  • S.A. Getty, W.B. Brinckerhoff, T. Cornish, S. Ecelberger, M. Floyd, Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26(23), 2786–2790 (2012). https://doi.org/10.1002/rcm.6393

    Article  ADS  Google Scholar 

  • K.H. Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, I. Richter, The Rosetta Mission: flying towards the origin of the Solar System. Space Sci. Rev. 128(1–4), 1–21 (2007). https://doi.org/10.1007/s11214-006-9140-8

    Article  ADS  Google Scholar 

  • F. Goesmann, H. Rosenbauer, R. Roll, C. Szopa, F. Raulin, R. Sternberg, G. Israel, U. Meierhenrich, W. Thiemann, G. Munoz-Caro, Cosac, the cometary sampling and composition experiment on philae. Space Sci. Rev. 128(1–4), 257–280 (2007). https://doi.org/10.1007/s11214-006-9000-6

    Article  ADS  Google Scholar 

  • O. Grasset, M.K. Dougherty, A. Coustenis, E.J. Bunce, C. Erd, D. Titov, M. Blanc, A. Coates, P. Drossart, L.N. Fletcher, H. Hussmann, R. Jaumann, N. Krupp, J.P. Lebreton, O. Prieto-Ballesteros, P. Tortora, F. Tosi, T.V. Hoolst, JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013). https://doi.org/10.1016/j.pss.2012.12.002

    Article  ADS  Google Scholar 

  • D. Grinfeld, H. Stewart, M. Skoblin, E. Denisov, M. Monastryrsky, A. Makarov, Space-charge dynamics in Orbitrap mass spectrometers. Int. J. Mod. Phys. A 34(36), 15 (2019). https://doi.org/10.1142/S0217751X19420077

    Article  MathSciNet  Google Scholar 

  • M. Hässig, K. Altwegg, H. Balsiger, J. Berthelier, A. Bieler, U. Calmonte, F. Dhooghe, B. Fiethe, S. Fuselier, S. Gasc, T. Gombosi, L. Le Roy, A. Luspay-Kuti, K. Mandt, M. Rubin, C.Y. Tzou, S. Wampfler, P. Wurz, Isotopic composition of CO2 in the coma of 67P/Churyumov-Gerasimenko measured with ROSINA/DFMS. Astron. Astrophys. 605, A50 (2017). https://doi.org/10.1051/0004-6361/201630140

    Article  ADS  Google Scholar 

  • L. Hofer, P. Wurz, A. Buch, M. Cabane, P. Coll, D. Coscia, M. Gerasimov, D. Lasi, A. Sapgir, C. Szopa, M. Tulej, Prototype of the gas chromatograph - mass spectrometer to investigate volatile species in the lunar soil for the Luna-Resurs mission. Planet. Space Sci. 111, 126–133 (2015)

    Article  ADS  Google Scholar 

  • J.H. Hoffman, R.R. Hodges Jr., D.E. Evans, Lunar orbital mass spectrometer experiment, in Lunar and Planetary Science Conference Proceedings, vol. 3 (1972), p. 2205

    Google Scholar 

  • J.H. Hoffman, R.R. Hodges, F.S. Johnson, D.E. Evans, Lunar atmospheric composition results from Apollo 17, in Lunar and Planetary Science Conference, vol. 4 (1973), p. 376

    Google Scholar 

  • M. Hofstadter, A. Simon, K. Reh, J. Elliot, Ice Giant Mission Study Final Report. Tech. Rep., National Aeronautics and Space Administration and Jet Propulsion Laboratory, California Institute of Technology (2017). JPL D-100520

  • M. Hohl, P. Wurz, S. Scherer, K. Altwegg, H. Balsiger, Mass selective blanking in a compact multiple reflection time-of-flight mass spectrometer. Int. J. Mass Spectrom. 188(3), 189–197 (1999). https://doi.org/10.1016/S1387-3806(99)00040-8

    Article  Google Scholar 

  • S.M. Hörst, R.V. Yelle, A. Buch, N. Carrasco, G. Cernogora, O. Dutuit, E. Quirico, E. Sciamma-O’Brien, M.A. Smith, Á. Somogyi, C. Szopa, R. Thissen, V. Vuitton, Formation of amino acids and nucleotide bases in a titan atmosphere simulation experiment. Astrobiology 12(9), 809–817 (2012). https://doi.org/10.1089/ast.2011.0623

    Article  ADS  Google Scholar 

  • Q. Hu, R.J. Noll, H. Li, A. Makarov, M. Hardman, R. Graham Cooks, The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40(4), 430–443 (2005). https://doi.org/10.1002/jms.856

    Article  ADS  Google Scholar 

  • V. Istomin, K. Grechnev, V. Kotchnev, Mass spectrometer measurements of the composition of the lower atmosphere of Venus, in Space Research, ed. by M. Rycroft. COSPAR Colloquia Series, vol. 20 (Pergamon, Elmsford, 1980), pp. 215–218. https://doi.org/10.1016/S0964-2749(13)60044-X

    Chapter  Google Scholar 

  • C.Y. Johnson, E.B. Meadows, First investigation of ambient positive-ion composition to 219 km by rocket-borne spectrometer. J. Geophys. Res. 60(2), 193–203 (1955). https://doi.org/10.1029/JZ060i002p00193

    Article  ADS  Google Scholar 

  • J. Kissel, A. Glasmachers, E. Grün, H. Henkel, H. Höfner, G. Haerendel, H. von Hoerner, K. Hornung, E.K. Jessberger, F.R. Krueger, D. Möhlmann, J.M. Greenberg, Y. Langevin, J. Silén, D. Brownlee, B.C. Clark, M.S. Hanner, F. Hoerz, S. Sandford, Z. Sekanina, P. Tsou, N.G. Utterback, M.E. Zolensky, C. Heiss, Cometary and Interstellar Dust Analyzer for comet Wild 2. J. Geophys. Res., Planets 108(E10), 8114 (2003). https://doi.org/10.1029/2003JE002091

    Article  ADS  Google Scholar 

  • D. Krankowsky, P. Lammerzahl, I. Herrwerth, J. Woweries, P. Eberhardt, U. Dolder, U. Herrmann, W. Schulte, J.J. Berthelier, J.M. Illiano, R.R. Hodges, J.H. Hoffman, In situ gas and ion measurements at comet Halley. Nature 321, 326–329 (1986). https://doi.org/10.1038/321326a0

    Article  ADS  Google Scholar 

  • T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefière, J.L. Bertaux, Tdlas, a diode laser sensor for the in situ monitoring of H2O and CO2 isotopes. in 35th COSPAR Scientific Assembly, vol. 35 (2004), p. 2115

    Google Scholar 

  • J.P. Lebreton, O. Witasse, C. Sollazzo, T. Blancquaert, P. Couzin, A.M. Schipper, J.B. Jones, D.L. Matson, L.I. Gurvits, D.H. Atkinson, B. Kazeminejad, M. Pérez-Ayúcar, An overview of the descent and landing of the Huygens probe on Titan. Nature 438(7069), 758–764 (2005). https://doi.org/10.1038/nature04347

    Article  ADS  Google Scholar 

  • X. Li, R.M. Danell, V.T. Pinnick, A. Grubisic, F. van Amerom, R.D. Arevalo, S.A. Getty, W.B. Brinckerhoff, A.E. Southard, Z.D. Gonnsen, T. Adachi, Mars organic molecule analyzer (moma) laser desorption/ionization source design and performance characterization. Int. J. Mass Spectrom. 422, 177–187 (2017). https://doi.org/10.1016/j.ijms.2017.03.010

    Article  Google Scholar 

  • N. Ligterink, A. Riedo, P. Wurz, P. Ehrenfreund, C. Cockell, M. Tulej, V. Grimaudo, R. Lindner, ORIGIN: a novel and compact Laser Desorption - Mass Spectrometry system for sensitive in situ detection of amino acids on extraterrestrial surfaces. Nature Sci. Rep. (2019). https://doi.org/10.7892/boris.135853

  • R. Lorenz, E. Turtle, J. Barnes, M. Trainer, D. Adams, K. Hibbard, C. Sheldon, K. Zacny, P. Peplowski, D. Lawrence, M. Ravine, T. McGee, K. Sotzen, S. MacKenzie, J. Langelaan, S. Schmitz, L. Wolfarth, P. Bedini, Dragonfly: a rotorcraft lander concept for scientific exploration at titan. Johns Hopkins APL Technical Digest (Applied Physics Laboratory) 34(3), 374–387 (2018)

  • S.M. Madzunkov, D. Nikolić, Accurate Xe isotope measurement using JPL ion trap. J. Am. Soc. Mass Spectrom. 25, 1841–1852 (2014). https://doi.org/10.1007/s13361-014-0980-2

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atreya, J. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer. J. Geophys. Res. 105(E6), 15,061–15,072 (2000). https://doi.org/10.1029/1999JE001224

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, C.R. Webster, M. Cabane, P.G. Conrad, P. Coll, S.K. Atreya, R. Arvey, M. Barciniak, M. Benna, L. Bleacher, W.B. Brinckerhoff, J.L. Eigenbrode, D. Carignan, M. Cascia, R.A. Chalmers, J.P. Dworkin, T. Errigo, P. Everson, H. Franz, R. Farley, S. Feng, G. Frazier, a. Freissinet, D.P. Glavin, D.N. Harpold, D. Hawk, V. Holmes, C.S. Johnson, A. Jones, P. Jordan, J. Kellogg, J. Lewis, E. Lyness, C.A. Malespin, D.K. Martin, J. Maurer, A.C. McAdam, D. McLennan, T.J. Nolan, M. Noriega, A.A. Pavlov, B. Prats, E. Raaen, O. Sheinman, D. Sheppard, J. Smith, J.C. Stern, F. Tan, M. Trainer, D.W. Ming, R.V. Morris, J. Jones, C. Gundersen, A. Steele, J. Wray, O. Botta, L.A. Leshin, T. Owen, S. Battel, B.M. Jakosky, H. Manning, S. Squyres, R. Navarro-González, C.P. McKay, F. Raulin, R. Sternberg, A. Buch, P. Sorensen, R. Kline-Schoder, D. Coscia, C. Szopa, S. Teinturier, C. Baffes, J. Feldman, G. Flesch, S. Forouhar, R. Garcia, D. Keymeulen, S. Woodward, B.P. Block, K. Arnett, R. Miller, C. Edmonson, S. Gorevan, E. Mumm, The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170(1), 401–478 (2012). https://doi.org/10.1007/s11214-012-9879-z

    Article  ADS  Google Scholar 

  • P.R. Mahaffy, M. Benna, T. King, D.N. Harpold, R. Arvey, M. Barciniak, M. Bendt, D. Carrigan, T. Errigo, V. Holmes, C.S. Johnson, J. Kellogg, P. Kimvilakani, M. Lefavor, J. Hengemihle, F. Jaeger, E. Lyness, J. Maurer, A. Melak, F. Noreiga, M. Noriega, K. Patel, B. Prats, E. Raaen, F. Tan, E. Weidner, C. Gundersen, S. Battel, B.P. Block, K. Arnett, R. Miller, C. Cooper, C. Edmonson, J.T. Nolan, The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev. 195(1–4), 49–73 (2015). https://doi.org/10.1007/s11214-014-0091-1

    Article  ADS  Google Scholar 

  • S.M. Maiga, S.M. Gatica, Monolayer adsorption of noble gases on graphene. Chem. Phys. 501, 46–52 (2018). https://doi.org/10.1016/j.chemphys.2017.11.020

    Article  Google Scholar 

  • A. Makarov, Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72(6), 1156–1162 (2000)

    Article  Google Scholar 

  • B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, V.A. Zagulin, The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov. Phys. JETP 37, 45 (1973)

    ADS  Google Scholar 

  • R. March, R. Hughes, Quadrupole storage mass spectrometry, in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, vol. 102 (Wiley, New York, 1989). https://books.google.ch/books?id=FkYaAQAAMAAJ

    Google Scholar 

  • A. Marshall, V. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry (Elsevier, Amsterdam, 1990)

    Google Scholar 

  • H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64(2), 544–557 (1980). https://doi.org/10.1143/PTP.64.544

    Article  ADS  Google Scholar 

  • R. Moor, E. Kopp, U. Jenzer, H. Ramseyer, U. Waelchli, E. Arijs, D. Nevejans, J. Ingels, D. Fussen, A. Barassin, A double focussing mass-spectrometer for simultaneous ion measurements in the stratosphere, in Presented at the 9th ESA Symposium on European Rocket and Balloon Programs and Related Research (1989), pp. 3–7

    Google Scholar 

  • P. Moreno-García, V. Grimaudo, A. Riedo, M. Tulej, M.B. Neuland, P. Wurz, P. Broekmann, Towards structural analysis of polymeric contaminants in electrodeposited Cu films. Electrochim. Acta 199, 394–402 (2016). https://doi.org/10.1016/j.electacta.2016.03.123

    Article  Google Scholar 

  • O. Mousis, L.N. Fletcher, J.P. Lebreton, P. Wurz, T. Cavalié, A. Coustenis, R. Courtin, D. Gautier, R. Helled, P.G.J. Irwin, A.D. Morse, N. Nettelmann, B. Marty, P. Rousselot, O. Venot, D.H. Atkinson, J.H. Waite, K.R. Reh, A.A. Simon, S. Atreya, N. André, M. Blanc, I.A. Daglis, G. Fischer, W.D. Geppert, T. Guillot, M.M. Hedman, R. Hueso, E. Lellouch, J.I. Lunine, C.D. Murray, J. O‘Donoghue, M. Rengel, A. Sánchez-Lavega, F.X. Schmider, A. Spiga, T. Spilker, J.M. Petit, M.S. Tiscareno, M. Ali-Dib, K. Altwegg, S.J. Bolton, A. Bouquet, C. Briois, T. Fouchet, S. Guerlet, T. Kostiuk, D. Lebleu, R. Moreno, G.S. Orton, J. Poncy, Scientific rationale for Saturn’s in situ exploration. Planet. Space Sci. 104, 29–47 (2014). https://doi.org/10.1016/j.pss.2014.09.014

    Article  ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, R. Ambrosi, S. Atreya, D. Banfield, S. Barabash, M. Blanc, T. Cavalié, A. Coustenis, M. Deleuil, G. Durry, F. Ferri, L. Fletcher, T. Fouchet, T. Guillot, P. Hartogh, R. Hueso, M. Hofstadter, J.P. Lebreton, K.E. Mandt, H. Rauer, P. Rannou, J.B. Renard, A. Sanchez-Lávega, K. Sayanagi, A. Simon, T. Spilker, E. Venkatapathy, J.H. Waite, P. Wurz, In situ Exploration of the Giant Planets, pp. 1–17 (2019). arXiv:1908.00917

  • H.B. Niemann, D.N. Harpold, S.K. Atreya, G.R. Carignan, D.M. Hunten, T.C. Owen, Galileo Probe Mass Spectrometer experiment. Space Sci. Rev. 60(1–4), 111–142 (1992). https://doi.org/10.1007/BF00216852

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, The Galileo Probe Mass Spectrometer: composition of Jupiter’s atmosphere. Science 272(5263), 846–849 (1996). https://doi.org/10.1126/science.272.5263.846

    Article  ADS  Google Scholar 

  • H. Niemann, S. Atreya, G. Carignan, T. Donahue, J. Haberman, D. Harpold, R. Hartle, D. Hunten, W. Kasprzak, P. Mahaffy, T. Owen, N. Spencer, Chemical composition measurements of the atmosphere of Jupiter with the Galileo Probe mass spectrometer. Adv. Space Res. 21(11), 1455–1461 (1998a). https://doi.org/10.1016/S0273-1177(98)00019-2

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, S.H. Way, The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103(E10), 22,831–22,846 (1998b). https://doi.org/10.1029/98JE01050

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, K. Biemann, B. Block, G.R. Carignan, T.M. Donahue, R.L. Frost, D. Gautier, J.A. Haberman, D. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, K. Mauersberger, T.C. Owen, F. Raulin, J.E. Richards, S.H. Way, The gas chromatograph mass spectrometer for the Huygens probe. Space Sci. Rev. 104(1), 553–591 (2002). https://doi.org/10.1023/A:1023680305259

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way, The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069), 779–784 (2005). https://doi.org/10.1038/nature04122

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, J.E. Demick, D. Gautier, J.A. Haberman, D.N. Harpold, W.T. Kasprzak, J.I. Lunine, T.C. Owen, F. Raulin, Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res., Planets 115(E12), E12006 (2010)

    Article  ADS  Google Scholar 

  • A.O. Nier, A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum. 18(6), 398–411 (1947). https://doi.org/10.1063/1.1740961

    Article  ADS  Google Scholar 

  • A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82(28), 4341–4349 (1977). https://doi.org/10.1029/JS082i028p04341

    Article  ADS  Google Scholar 

  • A.O. Nier, J.H. Hoffman, C.Y. Johnson, J.C. Holmes, Neutral constituents of the upper atmosphere: the minor peaks observed in a mass spectrometer. J. Geophys. Res. 69(21), 4629–4636 (1964). https://doi.org/10.1029/JZ069i021p04629

    Article  ADS  Google Scholar 

  • E.N. Nikolaev, I.A. Boldin, R. Jertz, G. Baykut, Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 22, 1125–1133 (2011). https://doi.org/10.1007/s13361-011-0125-9

    Article  ADS  Google Scholar 

  • M. Nikolić, Darrach: response of QIT-MS to noble gas isotopic ratios in a simulated venus flyby. Atmosphere 10(5), 232 (2019). https://doi.org/10.3390/atmos10050232

    Article  ADS  Google Scholar 

  • D. Okumura, M. Toyoda, M. Ishihara, I. Katakuse, A compact sector-type multi-turn time-of-flight mass spectrometer ‘multum ii’. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 519(1), 331–337 (2004). https://doi.org/10.1016/j.nima.2003.11.249. Proceedings of the Sixth International Conference on Charged Particle Optics

    Article  ADS  Google Scholar 

  • S. Orsini, S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. di Lellis, E. Kallio (SERENA Team), SERENA: a suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci. 58(1–2), 166–181 (2010). https://doi.org/10.1016/j.pss.2008.09.012

    Article  ADS  Google Scholar 

  • P.T. Palmer, T.F. Limero, Mass spectrometry in the U.S. space program: past, present, and future. J. Am. Soc. Mass Spectrom. 12(6), 656–675 (2001). https://doi.org/10.1021/jasms.8b01630

    Article  Google Scholar 

  • R. Pappalardo, S. Vance, F. Bagenal, B. Bills, D. Blaney, D. Blankenship, W. Brinckerhoff, J. Connerney, K. Hand, T. Hoehler, J. Leisner, W. Kurth, M. McGrath, M. Mellon, J. Moore, G. Patterson, L. Prockter, D. Senske, B. Schmidt, E. Shock, D. Smith, K. Soderlund, Science potential from a Europa Lander. Astrobiology 13(8), 740–773 (2013). https://doi.org/10.1089/ast.2013.1003. PMID: 23924246

    Article  ADS  Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124(1), 62–85 (1996). https://doi.org/10.1006/icar.1996.0190

    Article  ADS  Google Scholar 

  • C. Poole, Gas chromatography, in Handbooks in Separation Science (Elsevier, Amsterdam, 2012). https://books.google.ch/books?id=O77061hwfd4C

    Google Scholar 

  • A. Riedo, V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Wurz, P. Broekmann, High depth-resolution laser ablation chemical analysis of additive-assisted Cu electroplating for microchip architectures. J. Anal. At. Spectrom. 30, 2371–2374 (2015). https://doi.org/10.1039/C5JA00295H

    Article  Google Scholar 

  • A. Riedo, V. Grimaudo, P. Moreno-García, M.B. Neuland, M. Tulej, P. Broekmann, P. Wurz, Laser ablation/ionisation mass spectrometry: sensitive and quantitative chemical depth profiling of solid materials. CHIMIA Int. J. Chem. 70(4), 268–273 (2016). https://doi.org/10.2533/chimia.2016.268

    Article  Google Scholar 

  • A. Riedo, C. de Koning, A. Stevens, A. McDonald, A.C. Lopez, M. Tulej, P. Wurz, C. Cockell, P. Ehrenfreund, The detection of microbes in Martian mudstone analogues using laser ablation ionization mass spectrometry at high spatial resolution. Astrobiology (2019). https://doi.org/10.7892/boris.135851

  • M. Rubin, K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, C. Briois, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S. Fuselier, S. Gasc, T. Gombosi, K. Hansen, E. Kopp, A. Korth, D. Laufer, L. Le Roy, U. Mall, B. Marty, O. Mousis, T. Owen, H. Rème, T. Sémon, C.Y. Tzou, J. Waite, P. Wurz, Krypton isotopes and noble gas abundances in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 4, eaar6297 (2018). https://doi.org/10.1126/sciadv.aar6297

    Article  ADS  Google Scholar 

  • M. Rubin, D.V. Bekaert, M.W. Broadley, M.N. Drozdovskaya, S.F. Wampfler, Volatile species in comet 67P/Churyumov-Gerasimenko: investigating the link from the ISM to the terrestrial planets. ACS Earth Space Chem. 3(9), 1792–1811 (2019). https://doi.org/10.1021/acsearthspacechem.9b00096

    Article  Google Scholar 

  • D.R. Rushneck, A.V. Diaz, D.W. Howarth, J. Rampacek, K.W. Olson, W.D. Dencker, P. Smith, L. McDavid, A. Tomassian, M. Harris, K. Bulota, K. Biemann, A.L. LaFleur, J.E. Biller, T. Owen, Viking gas chromatograph-mass spectrometer. Rev. Sci. Instrum. 49(6), 817–834 (1978). https://doi.org/10.1063/1.1135623

    Article  ADS  Google Scholar 

  • S. Scherer, K. Altwegg, H. Balsiger, J. Fischer, A. Jäckel, A. Korth, M. Mildner, D. Piazza, H. Reme, P. Wurz, A novel principle for an ion mirror design in time-of-flight mass spectrometry. Int. J. Mass Spectrom. 251(1), 73–81 (2006). https://doi.org/10.1016/j.ijms.2006.01.025

    Article  Google Scholar 

  • R. Schletti, P. Wurz, S. Scherer, O.H. Siegmund, Fast microchannel plate detector with an impedance matched anode in suspended substrate technology. Rev. Sci. Instrum. 72(3), 1634–1639 (2001). https://doi.org/10.1063/1.1344601

    Article  ADS  Google Scholar 

  • I. Schroeder I, K. Altwegg, H. Balsiger, J.J. Berthelier, M. Combi, J. De Keyser, B. Fiethe, S. Fuselier, T. Gombosi, K. Hansen, M. Rubin, Y. Shou, V. Tenishev, T. Sémon, S. Wampfler, P. Wurz, A comparison between the two lobes of comet 67P / Churyumov-Gerasimenko based on D/H ratios in H2O measured with the Rosetta / ROSINA DFMS. Mon. Not. R. Astron. Soc. 489, 4734–4740 (2019a). https://doi.org/10.1093/mnras/stz2482

    Article  ADS  Google Scholar 

  • I. Schroeder I, K. Altwegg, H. Balsiger, J.J. Berthelier, J. De Keyser, B. Fiethe, S. Fuselier, S. Gasc, T. Gombosi, M. Rubin, T. Sémon, C.-Y. Tzou, S. Wampfler, P. Wurz, The \(^{16}{\mathrm{O}}/^{18}{\mathrm{O}}\) ratio in water in the Coma of Comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double focusing mass spectrometer. Astron. Astrophys. 630, A29 (2019b). https://doi.org/10.1051/0004-6361/201833806

    Article  Google Scholar 

  • R. Schulz, J. Benkhoff, BepiColombo: payload and mission updates. Adv. Space Res. 38(4), 572–577 (2006). https://doi.org/10.1016/j.asr.2005.05.084. Mercury, Mars and Saturn

    Article  ADS  Google Scholar 

  • L. Selliez, C. Briois, N. Carrasco, L. Thirkell, R. Thissen, M. Ito, F.R. Orthous-Daunay, G. Chalumeau, F. Colin, H. Cottin, C. Engrand, L. Flandinet, N. Fray, B. Gaubicher, N. Grand, J.P. Lebreton, A. Makarov, S. Ruocco, C. Szopa, V. Vuitton, P. Zapf, Identification of organic molecules with a laboratory prototype based on the laser ablation-cosmorbitrap. Planet. Space Sci. 170, 42–51 (2019). https://doi.org/10.1016/j.pss.2019.03.003

    Article  ADS  Google Scholar 

  • S. Shimma, M. Toyoda, Miniaturized mass spectrometer in analysis of greenhouse gases: the performance and possibilities, in Greenhouse Gases, ed. by G. Liu (IntechOpen, Rijeka, 2012). https://doi.org/10.5772/33815, chap. 11

    Chapter  Google Scholar 

  • D.F. Smith, D.C. Podgorski, R.P. Rodgers, G.T. Blakney, C.L. Hendrickson, 21 tesla ft-icr mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Anal. Chem. 90(3), 2041–2047 (2018). https://doi.org/10.1021/acs.analchem.7b04159. PMID: 29303558

    Article  Google Scholar 

  • C. Snodgrass, G.H. Jones, TI - The European Space Agency’s Comet Interceptor lies in wait. Nat. Commun. 10, 5418 (2019). https://doi.org/10.1038/s41467-019-13470-1

    Article  ADS  Google Scholar 

  • M. Toyoda, D. Okumura, M. Ishihara, I. Katakuse, Multi-turn time-of-flight mass spectrometers with electrostatic sectors. J. Mass Spectrom. 38(11), 1125–1142 (2003). https://doi.org/10.1002/jms.546

    Article  ADS  Google Scholar 

  • A.P. Vinogradov, Y.A. Surkov, B.M. Andreichikov, O.M. Kalinkina, I.M. Grechischeva, The chemical composition of the atmosphere of Venus, in Symposium - International Astronomical Union, vol. 40 (1971), pp. 3–16. https://doi.org/10.1017/S0074180900102529

    Chapter  Google Scholar 

  • U. Von Zahn, D. Hunten, The Jupiter helium interferometer experiment on the Galileo entry probe. Space Sci. Rev. 60(1–4), 263–281 (1992). https://doi.org/10.1007/BF00216857

    Article  ADS  Google Scholar 

  • U. Von Zahn, D. Hunten, G. Lehmacher, Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. J. Geophys. Res., Planets 103(E10), 22,815–22,829 (1998). https://doi.org/10.1029/98JE00695

    Article  Google Scholar 

  • S.E. Waller, A. Belousov, R.D. Kidd, D. Nikolić, S.M. Madzunkov, J.S. Wiley, M.R. Darrach, Chemical ionization mass spectrometry: applications for the in situ measurement of nonvolatile organics at ocean worlds. Astrobiology 19(10), 1196–1210 (2019). https://doi.org/10.1089/ast.2018.1961

    Article  ADS  Google Scholar 

  • C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele, Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341(6143), 260–263 (2013). https://doi.org/10.1126/science.1237961

    Article  ADS  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter. Icarus 171(1), 153–170 (2004). https://doi.org/10.1016/j.icarus.2004.04.010

    Article  ADS  Google Scholar 

  • I.P. Wright, S.J. Barber, G.H. Morgan, A.D. Morse, S. Sheridan, D.J. Andrews, J. Maynard, D. Yau, S.T. Evans, M.R. Leese, J.C. Zarnecki, B.J. Kent, N.R. Waltham, M.S. Whalley, S. Heys, D.L. Drummond, R.L. Edeson, E.C. Sawyer, R.F. Turner, C.T. Pillinger, Ptolemy—an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Sci. Rev. 128(1–4), 363–381 (2007). https://doi.org/10.1007/s11214-006-9001-5

    Article  ADS  Google Scholar 

  • P. Wurz, D. Abplanalp, M. Tulej, H. Lammer, A neutral gas mass spectrometer for the investigation of lunar volatiles. Planet. Space Sci. 74(1), 264–269 (2012). https://doi.org/10.1016/j.pss.2012.05.016

    Article  ADS  Google Scholar 

  • P. Wurz, M. Rubin, K. Altwegg, H. Balsiger, J.J. Berthelier, A. Bieler, U. Calmonte, J. De Keyser, B. Fiethe, S.A. Fuselier, A. Galli, S. Gasc, T.I. Gombosi, A. Jäckel, L. Le Roy, U.A. Mall, H. Rème, V. Tenishev, C.Y. Tzou, Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, A22 (2015). https://doi.org/10.1051/0004-6361/201525980

    Article  Google Scholar 

Download references

Acknowledgements

A. Vorburger and P. Wurz gratefully acknowledge the financial support by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Vorburger.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Situ Exploration of the Ice Giants: Science and Technology

Edited by Olivier J. Mousis and David H. Atkinson

Appendix

Appendix

See Table 4.

Table 4 Accuracies for selected species measured during the different phases described in the main text, for the mass spectrometry experiment shown Fig. 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorburger, A., Wurz, P. & Waite, H. Chemical and Isotopic Composition Measurements on Atmospheric Probes Exploring Uranus and Neptune. Space Sci Rev 216, 57 (2020). https://doi.org/10.1007/s11214-020-00684-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00684-9

Keywords

Navigation