Skip to main content
Log in

Effect of K2O on Phase Relation and Viscosity of the CaO–SiO2—ZnO—FeO–Al2O3 System Slags

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The effect of K2O on phase relation and viscosity of the CaO–SiO2–25 wt % “FeO”–12 wt % ZnO–3 wt % Al2O3 slags was investigated using the rotating spindle method. Experimental results show that the slag viscosity increases with the first addition of K2O, exhibiting a maximum at K2O content of 1 wt %, followed by a decrease. The activation energy for viscous flow initially increases and then decreases with the increasing K2O content. K2O can lower the breaking temperature (TBk) of the slag at studied composition range. X-ray diffraction (XRD) analysis and thermodynamic calculation using FactsageTM 7.2 show that the melilite phase initially precipitates from the liquid phase, followed by the precipitation of olivine phase. Furthermore, Fourier transform infrared (FTIR) analysis reveals that the effect of K2O on the aluminate structure is prior to that of silicate structure. K2O first increases the degree of polymerization (DOP) of the slag by charge compensation effect, while acts as a network modifier when K2O is added to a certain value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Gregory, J.R., Nadeau, M.C., and Kirchain, R.E., Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass, Environ. Sci. Technol., 2009, vol. 43, no. 24, pp. 9245−9251.

    Article  CAS  Google Scholar 

  2. Spalvins, E., Dubey, B., and Townsend, T., Impact of electronic waste disposal on lead concentrations in landfill leachate, Environ. Sci. Technol., 2008, vol. 42, no. 19, pp. 7452−7458.

    Article  CAS  Google Scholar 

  3. Musson, S.E., Jang, Y.C., Townsend, T.G., and Chung, I.H., Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure, Environ. Sci. Technol., 2000, vol. 34, no. 20, pp. 4376−4381.

    Article  CAS  Google Scholar 

  4. Fernandes, H.R., Ferreira, D.D., Andreola, F., Lancellotti, I., Barbieri, L., and Ferreira, J.M.F., Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite, Ceram. Int., 2014, vol. 40, no. 8, pp. 13371−13379.

    Article  CAS  Google Scholar 

  5. Ling, T.C. and Poon, C.S., Effects of particle size of treated CRT funnel glass on properties of cement mortar, Mater. Struct., 2013, vol. 46, no. 1, pp. 25−34.

    Article  CAS  Google Scholar 

  6. Yuan, W.Y., Li, J.H., Zhang, Q.W., and Saito, F., Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass, Environ. Sci. Technol., 2012, vol. 46, no. 7, pp. 4109−4114.

    Article  CAS  Google Scholar 

  7. Singh, N., Li, J., and Zeng, X., An innovative method for the extraction of metal from waste cathode ray tubes through a mechanochemical process using 2-[Bis(carboxymethyl)amino] acetic acid chelating reagent, ACS Sustainable Chem. Eng., 2016, vol. 4, no. 9, pp. 4704−4709.

    Article  CAS  Google Scholar 

  8. Singh, N. and Li, J., An efficient extraction of lead metal from waste cathode ray tubes (CRTs) through mechano-thermal process by using carbon as a reducing agent, J. Cleaner Prod., 2017, vol. 148, pp. 103−110.

    Article  CAS  Google Scholar 

  9. Zhang, C., Zhuang, L., Yuan, W., Wang, J., and Bai, J., Extraction of lead from spent leaded glass in alkaline solution by mechanochemical reduction, Hydrometallurgy, 2016, vol. 165, no. 10, pp. 312−317.

    Article  CAS  Google Scholar 

  10. Sasai, R., Kubo, H., Kamiya, M., and Itoh, H., Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na(2)EDTA reagent, Environ. Sci. Technol., 2008, vol. 42, no. 11, pp. 4159−4164.

    Article  CAS  Google Scholar 

  11. Hu, B. and Hui, W., Extraction of lead from waste CRT funnel glass by generating lead sulfide-An approach for electronic waste management, Waste Manage., 2017, vol. 67, no. 9, pp. 253−258.

    Article  CAS  Google Scholar 

  12. Mingfei, X., Yaping, W., Jun, L., and Hua, X., Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process, J. Hazard. Mater., 2016, vol. 305, pp. 51−58.

    Article  CAS  Google Scholar 

  13. Xing, M., Fu, Z., Wang, Y., Wang, J., and Zhang, Z., Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process, J. Hazard. Mater., 2017, vol. 322, pp. 479−487.

    Article  CAS  Google Scholar 

  14. Okada, T. and Yonezawa, S., Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass, Waste Manage., 2013, vol. 33, no. 8, pp. 1758−1763.

    Article  CAS  Google Scholar 

  15. Okada, T., Lead extraction from cathode ray tube funnel glass melted under different oxidizing conditions, J. Hazard. Mater., 2015, vol. 292, pp. 188−196.

    Article  CAS  Google Scholar 

  16. Lv, J., Yang, H., Jin, Z., Ma, Z., and Song, Y., Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process, Waste Manage., 2016, vol. 57, pp. 198−206.

    Article  CAS  Google Scholar 

  17. Lv, J.F., Jin, Z.N., Yang, H.Y., Tong, L.L., Chen, G.B., and Xiao, F.X., Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12 wt % ZnO–3 wt % Al2O3 slags, Int. J. Miner., Metall. Mater., 2017, vol. 24, no. 7, pp. 756−767.

    Article  Google Scholar 

  18. Jin, Z., Yang, H., Lv, J., Tong, L., Chen, G., and Zhang, Q., Effect of ZnO on viscosity and structure of CaO–SiO2–ZnO–FeO–Al2O3 slags, JOM, 2018, vol. 70, no. 8, pp. 1430−1436.

    Article  CAS  Google Scholar 

  19. Gao, Y.M., Wang, S.B., Hong, C., Ma, X.J., and Yang, F., Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9 wt % Al2O3 slag system, Int. J. Miner., Metall. Mater., 2014, vol. 21, no. 4, pp. 353−362.

    Article  CAS  Google Scholar 

  20. Feng, C., Chu, M.S., Tang, J., Qin, J., Li, F., and Liu, Z.G., Effects of MgO and TiO2 on the viscous behaviors and phase compositions of titanium-bearing slag, Int. J. Miner., Metall. Mater., 2016, vol. 23, no. 8, pp. 868−880.

    Article  CAS  Google Scholar 

  21. Kim, W.H., Sohn, I., and Min, D.J., A Study on the viscous behavior with K2O additions in the CaO–SiO2–Al2O3–MgO–K2O quinary slag system, Steel Res. Int., 2010, vol. 81, no. 9, pp. 735−741.

    Article  CAS  Google Scholar 

  22. Zhang, G.H. and Chou, K.C., Measuring and modeling viscosity of CaO–Al2O3–SiO2(–K2O) melt, Metall. Mater. Trans. B, 2012, vol. 43, no. 4, pp. 841−848.

    Article  CAS  Google Scholar 

  23. Zhang, G.H. and Chou, K.C., Viscosity model for aluminosilicate melt, J. Min. Metall.,Sect. B, 2012, vol. 48, no. 3, pp. 433−442.

    Google Scholar 

  24. Park, H., Park, J.Y., Kim, G.H., and Sohn, I., Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 2012, vol. 83, no. 2, pp. 150−156.

    Article  CAS  Google Scholar 

  25. Kim, H., Kim, W.H., Sohn, I., and Min, D.J., The effect of MgO on the viscosity of the CaO–SiO2–20  wt % Al2O3–MgO slag system, Steel Res. Int., 2010, vol. 81, no. 4, pp. 261−264.

    Article  CAS  Google Scholar 

  26. Wang, Z.J., Shu, Q.F., Sridhar, S., Zhang, M., Guo, M., and Zhang, Z.T., Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags, Metall. Mater. Trans. B, 2015, vol. 46, no. 2, pp. 758−765.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the National Key R&D Program of China (no. 2018YFC1902004) and the National Natural Science Foundation of China (no. U1608254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Lv.

Ethics declarations

The authors claim that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhenan Jin, Lv, J. & Yang, H. Effect of K2O on Phase Relation and Viscosity of the CaO–SiO2—ZnO—FeO–Al2O3 System Slags. Russ. J. Non-ferrous Metals 61, 153–161 (2020). https://doi.org/10.3103/S1067821220020078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220020078

Keywords:

Navigation