Skip to main content

Advertisement

Log in

Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy comes after stroke as the most common chronic neurological disorder worldwide. Inflammation enhances neuronal hyperexcitability that could provide a background setting for the development of epilepsy. The aim of this study was to assess the effect of valproate (VAL), diclofenac (DIC), meloxicam (MEL), VAL + MEL and VAL + DIC in pentylenetetrazol (PTZ) kindled mice. Seventy mice were randomly allocated into 7 equal groups; Control, PTZ, VAL, DIC, MEL, VAL + MEL and VAL + DIC groups. Kindling was induced by PTZ (40 mg/kg, i.p.) injection every other day for 17 days. The drugs were administered, 30 min before each PTZ injection till the end of the schedule. Seizure score, latency, duration and mortality rate were recorded in all groups. Tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA) and prostaglandin E2 (PGE2) levels as well as reduced glutathione (GSH) content were assessed in brain homogenate at the end of the schedule. VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased seizure score and duration. Meanwhile, they increased the latency period. PTZ increased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, it decreased GSH content. Administration of VAL, DIC, MEL, VAL + MEL and VAL + DIC decreased TNF-α, IL-1β, MDA, and PGE2 levels meanwhile, they increased GSH content in the brain homogenates. Effects of VAL + DIC combination on the studied parameters were significant in relation to VAL. VAL, DIC, MEL, VAL + MEL and VAL + DIC produced anticonvulsant effect and mitigated inflammation and oxidative stress in PTZ-kindled mice. Interestingly, DIC rather than MEL enhanced the anticonvulsant effect VAL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. England MJ, Liverman CT, Schultz AM, Strawbridge LM (2012) A reprint from epilepsy across the spectrum: promoting health and understanding. Epilepsy Curr 12(6):245–253

    Article  PubMed  PubMed Central  Google Scholar 

  2. AlyuDikmen FM (2017) Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 29(1):1–16

    Article  Google Scholar 

  3. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacol 69:16–24

    Article  CAS  Google Scholar 

  4. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T (2011) IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 25(7):1281–1289

    Article  CAS  PubMed  Google Scholar 

  5. Wilcox KS, Vezzani A (2014) Does brain inflammation mediate pathological outcomes in epilepsy? Adv Exp Med Biol 813:169–183

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shimada T, Yamagata K. (2018). Pentylenetetrazole-induced kindling mouse model. J Vis Exp, 136.

  7. Wahab A (2010) Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals 3(7):2090–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altman R, Bosch B, Brune K, Patrignani P, Young C (2015) Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs 75(8):859–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tegeder I, Neupert W, Guhring H, Geisslinger G (2000) Effects of selective and unselective cyclooxygenase inhibitors on prostanoid release from various rat organs. J pharmacol Exp Ther 292(3):1161–1168

    CAS  PubMed  Google Scholar 

  10. Vieiraa V, Glassmannb D, Marafonb P, Pereirac P, Gomezc R, Coitinho AS (2016) Effect of diclofenac sodium on seizures and inflammatory profile induced by kindling seizure model. Epilepsy Res 127:107–113

    Article  Google Scholar 

  11. Peretz A, Degani N, Nachman R (2005) Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67:1053–1066

    Article  CAS  PubMed  Google Scholar 

  12. Darvishi H, Rezaei M, Khodayar MJ, Zargar HR, Dehghani MA, Vardanjani HR, Ghanbari S (2016) Differential effects of meloxicam on pentylenetetrazole- and maximal electroshock-induced convulsions in mice. Jundishapur J Nat Pharm Prod 12(2):e36412

    Article  Google Scholar 

  13. Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV (2010) Effect of COX-2 inhibitor meloxicam against traumatic brain. Neurol Res 32(6):629–635

    Article  CAS  PubMed  Google Scholar 

  14. Erkec OE, Arihan O (2015) Pentylenetetrazole kindling epilepsy model. Epilepsy 21(1):6–12

    Google Scholar 

  15. Abdel-kader ZY, Khorshid NEA, Abd El motteleb D, Elwany NE (2015) Protective effect of montelukast against pentylenetetrazole induced acute seizures and kindling in mice. ZUMJ 21:6

    Google Scholar 

  16. Almaghour HG, Zawawi NM, Sherif FM (2014) Effect of non-steroidal anti-inflammatory drugs on anticonvulsant activity of diazepam in mice. Pharm pharmacol Int J 1(1):4

    Google Scholar 

  17. Akula KK, Dhir A, Kulkarni SK (2008) Rofecoxib, a selective cyclooxygenase-2 (COX- 2) inhibitor increase pentylenetetrazole seizure threshold in mice: possible involvement of adenosoinergic mechanism. Epilepsy Res 78(1):60–70

    Article  CAS  PubMed  Google Scholar 

  18. Reagan-Shaw NM, Ahmad N (2008) Dose translation from animal to human study should be revisited. FASEB J 22:659–666

    Article  CAS  PubMed  Google Scholar 

  19. Crowther J R. (2009). Stages in ELISA. Methods Mol Bio, 516–78.

  20. Jain S, Bharal N, Khurana S, Mediratta PK, Sharma KK (2011) Anticonvulsant and antioxidant actions of trimetazidine in pentylenetetrazole-induced kindling model in mice. Naunyn Schmiedebergs Arch Pharmacol 383(4):385–392

    Article  CAS  PubMed  Google Scholar 

  21. Prostmann T, Kiessing ST (1992) Enzyme immunoassay techniques. An overview. J Immunol Methods 150:5–21

    Article  Google Scholar 

  22. Shin EJ, Jeong JH, Chung YH, Kim WK, Ko KH, Bach JH (2011) Role of oxidative stress in epileptic seizures. Neurochem Int 59(2):122–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy AJ, Dubey AK, Handu SS, Sharma P, Mediratta PK, Ahmed QM, Jain S (2018) Anticonvulsant and antioxidant effects of musa sapientum stem extract on acute and chronic experimental models of epilepsy. Pharmacognosy Res 10(1):49–54

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Den Pol AN, Obrientan K, Belousov A (1996) Glutamate hyperexitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience 74(3):653–674

    Article  Google Scholar 

  25. Martinc B, Grabnar I, Vovk T (2014) Antioxidants as a preventive treatment for epileptic process: a review of the current status. Curr Neuropharmacol 12(6):527–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gómez CD, Buijs RM, Sitges M (2014) The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus. J Neurochem 130(6):770–779

    Article  PubMed  Google Scholar 

  27. Lenz QF, Arroyo DS, Temp FR, Poersch AB, Masson CJ, Jesse AC (2014) Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood–brain barrier dysfunction. Neuroscience 277:859–871

    Article  CAS  PubMed  Google Scholar 

  28. Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J (2011) Interleukin-1beta biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics 8:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46(11):1724–1743

    Article  CAS  PubMed  Google Scholar 

  30. Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21

    Article  CAS  PubMed  Google Scholar 

  31. Balosso S, Ravizza T, Aronica E, Vezzani A (2013) The dual role of TNF-α and its receptors in seizures. Exp Neurol 247:267–271

    Article  CAS  PubMed  Google Scholar 

  32. He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ (2015) Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-ĸB-development up regulation of glutathione synthesis. Glia 63:1568–1580

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803

    Article  CAS  PubMed  Google Scholar 

  34. Suda S, Katsura K, Kanamaru T, Saito M, Katayama Y (2013) Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. Eur J Pharmacol 707(1–3):26–31

    Article  CAS  PubMed  Google Scholar 

  35. Ximenes JC, Verde EC, Naffah-Mazzacoratti M, Viana GS. (2012). Valproic acid, a drug with multiple molecular targets related to its potential neuroprotective action. Neurosci & Med, 3 (1): Article ID:17746, 14 pages.

  36. Himmerich H, Bartsch S, Hamer H, Mergl R, Schönherr J, Petersein C. (2014). Modulation of cytokine production by drugs with antiepileptic or mood stabilizer properties in anti-CD3- and anti-d40-stimulated blood in vitro. Oxid Med Cell Longev, 806162.

  37. Black JA, Liu S, Waxman SG (2009) Sodium channel activity modulates multiple functions in microglia. Glia 57(10):1072–1081

    Article  PubMed  Google Scholar 

  38. Khattab MI, Kamel EM, Abbas NAT, Kaoud A (2018) Diclofenac influence on the anticonvulsant effect of retigabine: the potential role of KCNQ channels. Egyptian J Basic Clin Pharmacol 8:1–17

    Article  Google Scholar 

  39. Zhang HJ, Sun RP, Lei GF, Yang L, Liu CX (2008) Cyclooxygenase-2 inhibitor inhibits hippocampal synaptic reorganization in pilocarpine-induced status epilepticus rats. J Zhejiang Univ Sci B 9(11):903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dhir A, Akula KK, Kulkarni SK (2008) Rofecoxib potentiates the anticonvulsant effect of topiramate. Inflammopharmacology 16(2):83–86

    Article  CAS  PubMed  Google Scholar 

  41. Haiju Z, Ruopeng S, Gefei L, Lu Y, Chunxi L (2008) Cyclooxygenase-2 inhibitor inhibits the hippocampal synaptic reorganization by inhibiting MAPK/ERK activity and modulating GABAergic transmission in pilocarpine-induced status epilepticus rats. Med Chem Res 18(2):71–90

    Article  Google Scholar 

  42. Oliveira MS, Furian AF, Royes LF, Fighera MR, Fiorenza NG, Castelli M, Machado P, Bohrer D, Veiga M, Ferreira J, Cavalheiro EA, Mello CF (2008) Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res 79(1):14–21

    Article  CAS  PubMed  Google Scholar 

  43. Holtman L, van Vliet EA, van Schaik R, Queiroz CM, Aronica E, Gorter JA (2009) Effects of SC58236, a selective COX-2 inhibitor, on epileptogenesis and spontaneous seizures in a rat model for temporal lobe epilepsy. Epilepsy Res 84(1):56–66

    Article  CAS  PubMed  Google Scholar 

  44. Patsalos PN. (2010). Drug to Drug Interactions of Antiepileptic Drugs: Mechanisms of Interaction and Management Strategies. In: Panayiotopoulos C.P. (Eds) Atlas of Epilepsies. Springer, London.

  45. Chesné C, Guyomard C, Guillouzo A, Schmid J, Ludwig E, Sauter T (1998) Metabolism of Meloxicam in human liver involves cytochromes P4502C9 and 3A4. Xenobiotica 128(1):1–13

    Article  Google Scholar 

Download references

Funding

self-funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Abdelsameea.

Ethics declarations

Conflicts of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgarhi, R., Shehata, M.M., Abdelsameea, A.A. et al. Effects of Diclofenac Versus Meloxicam in Pentylenetetrazol-Kindled Mice. Neurochem Res 45, 1913–1919 (2020). https://doi.org/10.1007/s11064-020-03054-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03054-7

Keywords

Navigation