Skip to main content
Log in

Identification of Ala2Thr mutation in insulin gene from a Chinese MODY10 family

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

More than 80% of maturity-onset diabetes of the young (MODY) in Chinese is genetically unexplained. To investigate whether the insulin gene (INS) mutation is responsible for some Chinese MODY, we screened INS mutations causing MODY10 in MODY pedigrees and explored the potential pathogenic mechanisms. INS mutations were screened in 56 MODY familial probands. Structure–function characterization and clinical profiling of identified INS mutations were conducted. An INS mutation, at the position 2 alanine-to-threonine substitution (A2T), was identified and co-segregated with hyperglycemia in a MODY pedigree. The A2T mutation converted an α-helix into a β-sheet at the N-terminal of the signal peptide (SP) of preproinsulin. The A2T mutation did not affect preproinsulin translocation across endoplasmic reticulum (ER) membrane, but impaired its SP cleavage within the ER. In INS-1 cells transfected with an A2T mutant, glucose-stimulated insulin secretion (GSIS) was significantly decreased, while BiP luciferase activities were significantly increased compared to that of wild type (WT). We identified an INS-A2T mutation cosegregating with diabetes in a Chinese MODY pedigree. This mutation severely impaired SP cleavage and thus blocked the formation of proinsulin, resulting in enhanced ER stress, which may be responsible for decreased insulin secretion and subsequently, the onset of MODY10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MODY:

Maturity-onset diabetes of the young

INS :

Insulin gene

SP:

Signal peptide

ER:

Endoplasmic reticulum

GSIS:

Glucose-stimulated insulin secretion

References

  1. Fajans SS, Bell GI, Polonsky KS (2001) Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 345:971–980. https://doi.org/10.1056/NEJMra002168

    Article  CAS  PubMed  Google Scholar 

  2. Shields BM, Shepherd M, Hudson M et al (2017) Population-based assessment of a biomarker-based screening pathway to aid diagnosis of monogenic diabetes in young-onset patients. Diabetes Care 40:1017–1025. https://doi.org/10.2337/dc17-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53:2504–2508. https://doi.org/10.1007/s00125-010-1799-4

    Article  CAS  PubMed  Google Scholar 

  4. American Diabetes Association (2019) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42(Suppl 1):S13–S28. https://doi.org/10.2337/dc19-S002

    Article  Google Scholar 

  5. Xu JY, Dan QH, Chan V, Wat NM, Tam S, Tiu SC, Lee KF, Siu SC, Tsang MW, Fung LM, Chan KW, Lam KS (2005) Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. Eur J Hum Genet 13:422–427. https://doi.org/10.1038/sj.ejhg.5201347

    Article  CAS  PubMed  Google Scholar 

  6. Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, Hattersley AT, Philipson LH, Bell GI, Neonatal Diabetes International Collaborative Group (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104:15040–15044. https://doi.org/10.1073/pnas.0707291104

    Article  CAS  PubMed  Google Scholar 

  7. Garin I, Edghill EL, Akerman I et al (2010) Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 107:3105–3110. https://doi.org/10.1073/pnas.0910533107

    Article  PubMed  Google Scholar 

  8. Gabbay KH (1980) The insulinopathies. N Engl J Med 302:165–167

    Article  CAS  Google Scholar 

  9. Molven A, Ringdal M, Nordbø AM, Raeder H, Støy J, Lipkind GM, Steiner DF, Philipson LH, Bergmann I, Aarskog D, Undlien DE, Joner G, Søvik O, Bell GI, Njølstad PR, Norwegian Childhood Diabetes Study Group (2008) Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 57:1131–1135. https://doi.org/10.2337/db07-1467

    Article  CAS  PubMed  Google Scholar 

  10. Bell GI, Pictet RL, Rutter WJ, Cordell B, Tischer E, Goodman HM (1980) Sequence of the human insulin gene. Nature 284:26–32

    Article  CAS  Google Scholar 

  11. Dodson G, Steiner D (1998) The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol 8:189–194. https://doi.org/10.1016/s0959-440x(98)80037-7

    Article  CAS  PubMed  Google Scholar 

  12. Weiss MA (2009) Proinsulin and the genetics of diabetes mellitus. J Biol Chem 284:19159–19163. https://doi.org/10.1074/jbc.R109.009936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, Shepherd MH, Hussain K, Kapoor RR, Malecki M, MacDonald MJ, Støy J, Steiner DF, Philipson LH, Bell GI, Hattersley AT, Ellard S, Neonatal Diabetes International Collaborative Group (2008) Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57:1034–1042. https://doi.org/10.2337/db07-1405

    Article  CAS  PubMed  Google Scholar 

  14. Meur G, Simon A, Harun N, Virally M, Dechaume A, Bonnefond A, Fetita S, Tarasov AI, Guillausseau PJ, Boesgaard TW, Pedersen O, Hansen T, Polak M, Gautier JF, Froguel P, Rutter GA, Vaxillaire M (2010) Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes 59:653–661. https://doi.org/10.2337/db09-1091

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Furuta H, Minami A, Zheng T, Jia W, Nanjo K, Xiang K (2007) A novel mutation, Ser159Pro in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family. Mol Cell Biochem 303:115–120. https://doi.org/10.1007/s11010-007-9463-0

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, Feng B, Zhao M, Zhuang L, Zheng T, Friedman TC, Xiang K (2013) Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 56:2609–2618. https://doi.org/10.1007/s00125-013-3031-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Liu Y, Ge X, Liu X, Chen C, Wang Y, Li M, Yin J, Zhang J, Chen Y, Zhang R, Jiang Y, Zhao W, Yang D, Zheng T, Lu M, Zhuang L, Jiang M (2018) Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 89:8–17. https://doi.org/10.1016/j.metabol.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  18. American Diabetes Association (2015) (2) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl):S8–S16. https://doi.org/10.2337/dc15-S005

    Article  Google Scholar 

  19. Ellard S, Bellanné-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network (EMQN) MODY Group (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546–553. https://doi.org/10.1007/s00125-008-0942-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu M, Lara-Lemus R, Shan SO, Wright J, Haataja L, Barbetti F, Guo H, Larkin D, Arvan P (2012) Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 61:828–837. https://doi.org/10.2337/db11-0878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyamoto K, Yamashita T, Tsukiyama T, Kitamura N, Minami N, Yamada M, Imai H (2008) Reversible membrane permeabilization of mammalian cells treated with digitonin and its use for inducing nuclear reprogramming by Xenopus egg extracts. Cloning Stem Cells 10:535–542. https://doi.org/10.1089/clo.2008.0020

    Article  CAS  PubMed  Google Scholar 

  22. Eskridge EM, Shields D (1983) Cell-free processing and segregation of insulin precursors. J Biol Chem 258:11487–11491

    CAS  PubMed  Google Scholar 

  23. Okun MM, Shields D (1992) Translocation of preproinsulin across the endoplasmic reticulum membrane. The relationship between nascent polypeptide size and extent of signal recognition particle-mediated inhibition of protein synthesis. J Biol Chem 267:11476–11482

    CAS  PubMed  Google Scholar 

  24. Guo H, Xiong Y, Witkowski P, Cui J, Wang LJ, Sun J, Lara-Lemus R, Haataja L, Hutchison K, Shan SO, Arvan P, Liu M (2014) Inefficient translocation of preproinsulin contributes to pancreatic beta cell failure and late-onset diabetes. J Biol Chem 289:16290–16302. https://doi.org/10.1074/jbc.M114.562355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  26. Leroux L, Desbois P, Lamotte L, Duvillié B, Cordonnier N, Jackerott M, Jami J, Bucchini D, Joshi RL (2001) Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 50(Suppl 1):S150–S153. https://doi.org/10.2337/diabetes.50.2007.s150

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Takeuchi T, Tanaka S, Kubo SK, Kayo T, Lu D, Takata K, Koizumi A, Izumi T (1999) A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J Clin Invest 103:27–37. https://doi.org/10.1172/JCI4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R (2007) Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice. Diabetes 56:1268–1276. https://doi.org/10.2337/db06-0658

    Article  CAS  PubMed  Google Scholar 

  29. Dusatkova L, Dusatkova P, Vosahlo J, Vesela K, Cinek O, Lebl J, Pruhova S (2015) Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young. Eur J Med Genet 58:230–234. https://doi.org/10.1016/j.ejmg.2015.02.004

    Article  PubMed  Google Scholar 

  30. Garin I, Perez de Nanclares G, Gastaldo E, Harries LW, Rubio-Cabezas O, Castaño L (2012) Permanent neonatal diabetes caused by creation of an ectopic splice site within the INS gene. PLoS ONE 7:e29205. https://doi.org/10.1371/journal.pone.0029205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan J, Jiang F, Zhang R, Xu T, Zhou Z, Ren W, Peng D, Liu Y, Hu C, Jia W (2017) Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J Mol Cell Biol 9:376–383. https://doi.org/10.1093/jmcb/mjx039

    Article  CAS  PubMed  Google Scholar 

  32. Ma Y, Han X, Zhou X, Li Y, Gong S, Zhang S, Cai X, Zhou L, Luo Y, Li M, Liu W, Zhang X, Ren Q, Ji L (2019) A new clinical screening strategy and prevalence estimation for glucokinase variant-induced diabetes in an adult Chinese population. Genet Med 21:939–947. https://doi.org/10.1038/s41436-018-0282-3

    Article  CAS  PubMed  Google Scholar 

  33. Thanabalasingham G, Owen KR (2011) Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 343:d6044. https://doi.org/10.1136/bmj.d6044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lin He for his assistance. We apologize to many authors whose works could not be cited due to space limitations. This work is supported by the National Natural Science Foundation of China [Grant Numbers 81970686, 81770791, 81471012, 81270876], the Interdisciplinary Program of Shanghai Jiao Tong University [Grant Number YG2019ZDA08], the Shanghai Leading Talent [Grant Number SLJ15055], and the National Institute of Diabetes and Digestive and Kidney Diseases [Grant Number SC1DK104821 to Y. Liu].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limei Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y., Li, M. et al. Identification of Ala2Thr mutation in insulin gene from a Chinese MODY10 family. Mol Cell Biochem 470, 77–86 (2020). https://doi.org/10.1007/s11010-020-03748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03748-0

Keywords

Navigation