Skip to main content
Log in

CIGB-300 anticancer peptide regulates the protein kinase CK2-dependent phosphoproteome

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha’ (CK2α/CK2α’) and two regulatory beta subunits (CK2β), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2β also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salvi M, Cesaro L, Pinna LA (2010) Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomol Concepts 1(2):185–195. https://doi.org/10.1515/bmc.2010.013

    Article  CAS  PubMed  Google Scholar 

  2. Ruzzene M (1804) Pinna LA (2010) Addiction to protein kinase CK2: A common denominator of diverse cancer cells? Biochim Biophys Acta (BBA) Proteins Proteom 3:499–504

    Google Scholar 

  3. Barata JT (2011) The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival. Adv Enzyme Regul 51(1):37–49. https://doi.org/10.1016/j.advenzreg.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  4. Scaglioni PP, Yung TM, Cai LF et al (2006) A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126:269–283

    Article  CAS  PubMed  Google Scholar 

  5. Di Maira G, Salvi M, Arrigoni G et al (2005) Protein kinase CK2 phosphorylates and upregulates Akt/PKB. Cell Death Differ 12:668–677

    Article  PubMed  Google Scholar 

  6. Channavajhala PL, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphogenesis. Oncogene 21:5280–5288

    Article  CAS  PubMed  Google Scholar 

  7. Chua MMJ, Ortega CE, Sheikh A et al (2017) CK2 in Cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals 10:18. https://doi.org/10.3390/ph10010018

    Article  CAS  PubMed Central  Google Scholar 

  8. Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878

    Article  CAS  PubMed  Google Scholar 

  9. Nunez de Villavicencio-Diaz T, Mazola Y, Perera Negrin Y et al (2015) Predicting CK2 beta-dependent substrates using linear patterns. Biochem Biophys Rep 4:20–27. https://doi.org/10.1016/j.bbrep.2015.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  10. Siddiqui-Jain A, Drygin D, Streiner N et al (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Can Res 70(24):10288–10298. https://doi.org/10.1158/0008-5472.CAN-10-1893

    Article  CAS  Google Scholar 

  11. Laudet B, Barette C, Dulery V et al (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408(3):363–373. https://doi.org/10.1042/BJ20070825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2(12):712–721

    CAS  PubMed  Google Scholar 

  13. Marschke RF, Borad MJ, McFarland RW et al (2011) Findings from the phase I clinical trials of CX-4945, an orally available inhibitor of CK2. J Clin Oncol 29:3087. https://doi.org/10.1200/jco.2011.29.15_suppl.3087

    Article  Google Scholar 

  14. Solares AM, Santana A, Baladrón I et al (2009) Safety and preliminary efficacy data of a novel Casein Kinase 2 (CK2) peptide inhibitor administered intralesionally at four dose levels in patients with cervical malignancies. BMC Cancer 9:146

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perea SE, Reyes O, Puchades Y et al (2004) Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Can Res 64(19):7127–7129. https://doi.org/10.1158/0008-5472.CAN-04-2086

    Article  CAS  Google Scholar 

  16. Perera Y, Farina HG, Gil J et al (2009) Anticancer peptide CIGB-300 binds to nucleophosmin/B23, impairs its CK2-mediated phosphorylation, and leads to apoptosis through its nucleolar disassembly activity. Mol Cancer Ther 8(5):1189–1196. https://doi.org/10.1158/1535-7163.MCT-08-1056

    Article  CAS  PubMed  Google Scholar 

  17. Perea SE, Baladron I, Garcia Y et al (2011) CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research. Mol Cell Biochem 356:45–50. https://doi.org/10.1007/s11010-011-0950-y

    Article  CAS  PubMed  Google Scholar 

  18. Martins LR, Perera Y, Lucio P et al (2014) Targeting chronic lymphocytic leukemia using CIGB-300, a clinical-stage CK2-specific cell-permeable peptide inhibitor. Oncotarget 5(1):258–263. https://doi.org/10.18632/oncotarget.1513

    Article  PubMed  Google Scholar 

  19. Boldyreff B, James P, Staudenmann W, Issinger OG (1993) Ser2 is the autophosphorylation site in the beta subunit from bicistronically expressed human casein kinase-2 and from native rat liver casein kinase-2 beta. Eur J Biochem 218(2):515–521. https://doi.org/10.1111/j.1432-1033.1993.tb18404.x

    Article  CAS  PubMed  Google Scholar 

  20. Litchfield DW, Lozeman FJ, Cicirelli MF et al (1991) Phosphorylation of the beta subunit of casein kinase II in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. J Biol Chem 266(30):20380–20389

    CAS  PubMed  Google Scholar 

  21. Pagano MA, Sarno S, Poletto G et al (2005) Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Mol Cell Biochem 274:23–29. https://doi.org/10.1007/s11010-005-3116-y

    Article  CAS  PubMed  Google Scholar 

  22. Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21(23):3754–3764. https://doi.org/10.1038/sj.onc.1205467

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez-Ulloa A, Ramos Y, Gil J et al (2010) Proteomic profile regulated by the anticancer peptide CIGB-300 in non-small cell lung cancer (NSCLC) cells. J Proteome Res 9(10):5473–5483. https://doi.org/10.1021/pr100728v

    Article  CAS  PubMed  Google Scholar 

  24. Leroy D, Filhol O, Quintaine N et al (1999) Dissecting subdomains involved in multiple functions of the CK2beta subunit. Mol Cell Biochem 191:43–50

    Article  CAS  PubMed  Google Scholar 

  25. Huang H, Arighi CN, Ross KE et al (2018) iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 46:D542–D550. https://doi.org/10.1093/nar/gkx1104

    Article  CAS  PubMed  Google Scholar 

  26. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lachmann A, Ma’ayan A (2009) KEA: kinase enrichment analysis. Bioinformatics 25(5):684–686. https://doi.org/10.1093/bioinformatics/btp026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weidner C, Fischer C, Sauer S (2014) PHOXTRACK-a tool for interpreting comprehensive datasets of post-translational modifications of proteins. Bioinformatics 30(23):3410–3411. https://doi.org/10.1093/bioinformatics/btu572

    Article  CAS  PubMed  Google Scholar 

  29. Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–97. https://doi.org/10.1093/nar/gkw377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Romero-Oliva F, Jacob G, Allende JE (2003) Dual effect of lysine-rich polypeptides on the activity of protein kinase CK2. Cell Biochem 89(2):348–355

    Article  CAS  Google Scholar 

  31. Szebeni A, Hingorani K, Negi S, Olson MOJ (2003) Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein b23. J Biol Chem 278(11):9107–9115. https://doi.org/10.1074/jbc.M204411200

    Article  CAS  PubMed  Google Scholar 

  32. Adenuga D, Rahman I (2010) Protein kinase CK2-mediated phosphorylation of HDAC2 regulates co-repressor formation, deacetylase activity and acetylation of HDAC2 by cigarette smoke and aldehydes. Arch Biochem Biophys 498(1):62–73. https://doi.org/10.1016/j.abb.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zanin S, Sandre M, Cozza G et al (2015) Chimeric peptides as modulators of CK2-dependent signaling: Mechanism of action and off-target effects. Biochem Biophys Acta 1854:1694–1707. https://doi.org/10.1016/j.bbapap.2015.04.026

    Article  CAS  PubMed  Google Scholar 

  34. Paytubi S, Wang X, Lam YW et al (2009) ABC50 promotes translation initiation in mammalian cells. J Biol Chem 284(36):24061–24073. https://doi.org/10.1074/jbc.M109.031625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salvi M, Xu D, Chen Y (2009) Programmed cell death protein 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells. Biochem Biophys Res Commun 387(3):606–610. https://doi.org/10.1016/j.bbrc.2009.07.067

    Article  CAS  PubMed  Google Scholar 

  36. Li G, Ma D (1863) Chen Y (2016) Cellular functions of programmed cell death 5. Biochem Biophys Acta 4:572–580. https://doi.org/10.1016/j.bbamcr.2015.12.021

    Article  CAS  Google Scholar 

  37. Miyata Y, Nishida E (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24(9):4065–4074. https://doi.org/10.1128/mcb.24.9.4065-4074.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim SW, Hasanuzzaman M, Cho M et al (2015) Casein Kinase 2 (CK2)-mediated phosphorylation of Hsp90beta as a novel mechanism of rifampin-induced MDR1 expression. J Biol Chem 290(27):17029–17040. https://doi.org/10.1074/jbc.M114.624106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Betapudi V, Gokulrangan G, Chance MR, Egelhoff TT (2011) A proteomic study of myosin II motor proteins during tumor cell migration. J Mol Biol 407(5):673–686. https://doi.org/10.1016/j.jmb.2011.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu W, Ding X, Chen F et al (2009) The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol Cell Biochem 325:61–67. https://doi.org/10.1007/s11010-008-0020-2

    Article  CAS  PubMed  Google Scholar 

  41. Khoronenkova SV, Dianova II, Ternette N et al (2012) ATM-dependent downregulation of USP7/HAUSP by PPM1G activates p53 response to DNA damage. Mol Cell 45(6):801–813. https://doi.org/10.1016/j.molcel.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moreno FJ, Avila J (1998) Phosphorylation of stathmin modulates its function as a microtubule depolymerizing factor. Mol Cell Biochem 183:201–209. https://doi.org/10.1023/a:1006807814580

    Article  CAS  PubMed  Google Scholar 

  43. Polzien L, Baljuls A, Rennefahrt UEE et al (2009) Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: pore-forming activity of BAD is regulated by phosphorylation. J Biol Chem 284(41):28004–28020. https://doi.org/10.1074/jbc.M109.010702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bui NLC, Pandey V, Zhu T, Ma L, Basappa Lobie PE (2018) Bad phosphorylation as a target of inhibition in oncology. Cancer Lett 415:177–186. https://doi.org/10.1016/j.canlet.2017.11.017

    Article  CAS  PubMed  Google Scholar 

  45. St-Denis N, Gabriel M, Turowec JP et al (2015) Systematic investigation of hierarchical phosphorylation by protein kinase CK2. J Proteom 118:49–62. https://doi.org/10.1016/j.jprot.2014.10.020

    Article  CAS  Google Scholar 

  46. Rusin SF, Adamo ME, Kettenbach AN (2017) Identification of candidate casein kinase 2 substrates in mitosis by quantitative phosphoproteomics. Front Cell Dev Biol 5:97. https://doi.org/10.3389/fcell.2017.00097

    Article  PubMed  PubMed Central  Google Scholar 

  47. Franchin C, Cesaro L, Salvi M et al (1854) (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells. Biochim Biophys Acta 6:609–623. https://doi.org/10.1016/j.bbapap.2014.09.017

    Article  CAS  Google Scholar 

  48. Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochem Biophys Acta 1793(5):847–859. https://doi.org/10.1016/j.bbamcr.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  49. Franchin C, Borgo C, Zaramella S et al (2017) Exploring the CK2 paradox: restless, dangerous, dispensable. Pharmaceuticals 10(1):11. https://doi.org/10.3390/ph10010011

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was conducted with the financial support of the CIGB-300 Grant, Biomedical Research Division, CIGB, Cuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser Perera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, Y., Ramos, Y., Padrón, G. et al. CIGB-300 anticancer peptide regulates the protein kinase CK2-dependent phosphoproteome. Mol Cell Biochem 470, 63–75 (2020). https://doi.org/10.1007/s11010-020-03747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03747-1

Keywords

Navigation