Skip to main content
Log in

Mechanism of Reduction of Hematite-Magnetite Hollow Cylindrical Pellet by Graphite-Calcium Carbonate Mixture

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the mechanism of reduction of hematite-magnetite concentrate (HMC) by graphite-calcium carbonate reductant mixture at about 1000 °C was investigated. The initial and middle stages of the reduction process (up to 63 pct) were mainly affected by the heat transfer inside the crucible. It was concluded that in the middle to final stages of the reduction process, the gaseous diffusion of reducing gas to the FeO-Fe reaction interface and the carbon gasification are the mixed controlling mechanism. The reduction rate was relatively slow below the carbon gasification temperature. According to X-ray diffractometer (XRD) analysis, the formation of the metallic iron was not observed before the carbon gasification. The scanning electron micrographs showed the formation of iron whiskers in the outer layer of the sample, which resulted in swelling of the sample. The observation of the reduced samples’ sections showed that the reduction progress was topochemical. The progress of the reduction from the inner surface of the sample was insignificant compared to the reduction from the outer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Ghosh: Trans. Ind. Inst. Met., 2013, vol. 66 (1), pp. 71–77.

    Article  CAS  Google Scholar 

  2. R. Sah and S.K. Dutta: Trans. Ind. Inst. Met., 2011, vol. 64 (6), pp. 583–91.

    Article  CAS  Google Scholar 

  3. S.C. Khattoi and G.G. Roy: Trans. Ind. Inst. Met., 2015, vol. 68 (5), pp. 683–92.

    Article  CAS  Google Scholar 

  4. H.A. Havemann: Direct Iron Ore Reduction for Asia, New York, 1959.

  5. K. Eriksson and M. Larsson: Energy Survey of the Sponge Iron Process, Lund, Sweden, 2005.

    Google Scholar 

  6. S.K. Dutta: Trans. Ind. Inst. Met., 2005, vol. 58 (5), pp. 801–08.

    CAS  Google Scholar 

  7. S. Mishra and G.G. Roy: Metall. Mater. Trans. B, 2016, vol. 47 (4), pp. 2347–56.

    Article  Google Scholar 

  8. K. Sun and W.K. Lu: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 91–103.

    Article  CAS  Google Scholar 

  9. O.M. Fortini and R.J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 709–17.

    Article  CAS  Google Scholar 

  10. C. Liu, X. Ding, J. Dai, Z. Tang, and Y. Dong: Ironmak. Steelmak., 2019.

  11. S. Dasgupta, S. Saleem, P. Srirangam, M. Auinger, and G.G. Roy: Metall. Mater. Trans. B, 2020, vol. 51B.

  12. S. Sun and W.K. Lu: ISIJ Int., 1999, vol. 39 (2), pp. 123–29.

    Article  CAS  Google Scholar 

  13. G.M. Chowdhury, C.S. Murmu, S.K. Roy, and G.G. Roy: Steel Res. Int., 2010, vol. 81 (11), pp. 925–31.

    Article  CAS  Google Scholar 

  14. A.A. El-Geassy, M.I. Nasr, S.M. El-Raghy, and A.A. Hammam: Ironmak. Steelmak., 2019.

  15. S. Mookherjee, H.S. Ray, and A. Mukherjee: Thermochim. Acta, 1985, vol. 95 (1), pp. 235–46.

    Article  CAS  Google Scholar 

  16. S. Mookherjee, H.S. Ray, and A. Mukherjee: Thermochim. Acta, 1985, vol. 95 (1), pp. 247–56.

    Article  CAS  Google Scholar 

  17. M. Mokhtari: Master’s Thesis, Ferdowsi University, Mashhad, Iran, 2013.

  18. R.J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279–86.

    Article  CAS  Google Scholar 

  19. Y.K. Rao: Metall. Trans., 1971, vol. 2, pp. 1439–47.

    CAS  Google Scholar 

  20. A. Shakiba, M. Zare, M.H. Hemati, J. Vahdati Khaki, and A. Zabett: 1st Int. 6th Joint Conf. Iran. Soc. Metall. Eng. Scient. Comm. Casting, 2012.

  21. M.D. Casal, M.A. Díez, R. Alvarez, and C. Barriocanal: Int. J. Coal Geol., 2008, vol. 76 (3), pp. 237–42.

    Article  CAS  Google Scholar 

  22. I. Sohn and R.J. Fruehan: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 605–12.

    Article  CAS  Google Scholar 

  23. F.J. Plaul, C. Böhm, and J.L. Schenk: J. South Afr. Inst. Min. Metall., 2009, vol. 109 (2), pp. 121–28.

    CAS  Google Scholar 

  24. M.H. Hemmati, J. VahdatiKhaki, and A. Zabett: Int. J. Eng. Trans. A, 2015, vol. 28 (1), pp. 109–14.

    CAS  Google Scholar 

  25. G.S. Liu, V. Strezov, J.A. Lucas, and L.J. Wibberley: Thermochim. Acta, 2004, vol. 410 (1–2), pp. 133–40.

    Article  CAS  Google Scholar 

  26. H. Park, I. Sohn, M. Freislich, and V. Sahajwalla: Steel Res. Int., 2017, vol. 88, no. 3.

  27. A. Khawam and D.R. Flanagan: J. Phys. Chem. B, 2006, vol. 110 (35), pp. 17315–17328.

    Article  CAS  Google Scholar 

  28. H.M. Ahmed, N.N. Viswanathan, and B. Björkman: Ironmak. Steelmak., 2017, vol. 44 (1), pp. 66–75.

    Article  CAS  Google Scholar 

  29. J. Lewis: in Modern Aspects of Graphite Technology, Academic Press, London, 1970.

    Google Scholar 

  30. P.L. Walker, J.M. Shelef, and R.A. Anderson: in Chemistry and Physics of Carbon, Marcel Dekker Inc., New York, NY, 1968.

    Google Scholar 

  31. L. Yi, Z. Huang, T. Jiang, L. Wang, and T. Qi: Powder Technol., 2015, vol. 269, pp. 290–95.

    Article  CAS  Google Scholar 

  32. M. Kumar, H. Baghel, and S.K. Patel: Miner. Process. Extr. Metall. Rev., 2013, vol. 34 (4), pp. 249–67.

    Article  CAS  Google Scholar 

  33. C.E. Seaton, J.S. Foster, and J. Velasco: Trans. Iron Steel Inst. Jpn., 1983, vol. 23 (6), pp. 490–96.

    Article  CAS  Google Scholar 

  34. S. Ghosh and A. Ghosh: A Textbook of Metallurgical Kinetics, PHI Learning Pvt. Ltd., New Delhi, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zabett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 31, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghi, S.M.A., Zabett, A. & Mirjalili, M. Mechanism of Reduction of Hematite-Magnetite Hollow Cylindrical Pellet by Graphite-Calcium Carbonate Mixture. Metall Mater Trans B 51, 1460–1468 (2020). https://doi.org/10.1007/s11663-020-01852-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01852-6

Navigation