Skip to main content
Log in

Comparison of ROW, ESDIRK, and BDF2 for Unsteady Flows with the High-Order Flux Reconstruction Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We conduct a comparative study of the Jacobian-free linearly implicit Rosenbrock–Wanner (ROW) methods, the explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) methods, and the second-order backward differentiation formula (BDF2) for the high-order flux reconstruction/correction procedure via reconstruction solution of the unsteady Navier–Stokes equations. Pseudo-transient continuation is employed to solve the nonlinear equation at each stage of ESDIRK (excluding the first stage) and each step of BDF2. A Jacobian-free implementation of the restarted generalized minimal residual method solver is employed with a low storage element-Jacobi preconditioner to solve the linear system at each stage of ROW and each pseudo time iteration of ESDIRK and BDF2. Several numerical experiments, including both laminar and turbulent flow simulations, are conducted to carry out the comparison. We observe that the multistage ROW2 and ESDIRK2 are more efficient than the multistep BDF2, and higher-order implicit time integrators are more efficient than lower-order ones. In general, the ESDIRK method allows a larger physical time step size for unsteady flow simulation than the ROW method when the element-Jacobi preconditioner is employed, especially for wall-bounded flows; and the ROW method can be more efficient than the ESDIRK method when the time step size is refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131(2), 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  4. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: The 18th AIAA Computational Fluid Dynamics Conference, (Miami, FL), AIAA-2007-4079 (2007)

  5. Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin methods for diffusion. In: The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace, (Orlando, FL), AIAA-2009-403 (2009)

  6. Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and \(k--\omega \) turbulence model equations. Comput. Fluids 34, 507–540 (2005)

    MATH  Google Scholar 

  9. Liang, C., Premasuthana, S., Jameson, A., Wang, Z.J.: Large eddy simulation of compressible turbulent channel flow with spectral difference method. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, AIAA-2009-402, (2009)

  10. Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87, 232–261 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech.-B/Fluids 55, 367–379 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Ceze, M.A., Fidkowski, K.J.: High-order output-based adaptive simulations of turbulent flow in two dimensions. AIAA J. 54, 2611–2625 (2016)

    Google Scholar 

  13. Wang, Z.J., Li, Y., Jia, F., Laskowski, G.M., Kopriva, J., Paliath, U., Bhaskaran, R.: Towards industrial large eddy simulation using the FR/CPR method. Comput. Fluids 156, 579–589 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Park, J.S., Witherden, F.D., Vincent, P.E.: High-order implicit large-eddy simulations of flow over a NACA0021 aerofoil. AIAA J. 55, 2186–2197 (2017)

    Google Scholar 

  15. Ahrabi, B.R., Brazell, M.J., Mavriplis, D.J.: An investigation of continuous and discontinuous finite-element discretizations on benchmark 3D turbulent flows. In 2018 AIAA aerospace sciences meeting, AIAA-2018-1569 (2018)

  16. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55, 552–574 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Vermeire, B., Vincent, P.: On the behaviour of fully-discrete flux reconstruction schemes. Comput. Methods Appl. Mech. Eng. 315, 1053–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Alhawwary, M., Wang, Z.: Fourier analysis and evaluation of DG, FD and compact difference methods for conservation laws. J. Comput. Phys. 373, 835–862 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    MATH  Google Scholar 

  21. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)

    MATH  Google Scholar 

  22. Carpenter, M.H., Viken, S.A., Nielsen, E.J.: The efficiency of high order temporal schemes. In: AIAA Paper, vol. 86 (2003)

  23. Wang, L., Mavriplis, D.J.: Implicit solution of the unsteady euler equations for high-order accurate discontinuous Galerkin discretizations. J. Comput. Phys. 225(2), 1994–2015 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Cash, J.: On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numer. Math. 34(3), 235–246 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Voss, D.A., Casper, M.J.: Efficient split linear multistep methods for stiff ordinary differential equations. SIAM J. Sci. Stat. Comput. 10(5), 990–999 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Psihoyios, G.-Y., Cash, J.: A stability result for general linear methods with characteristic function having real poles only. BIT Numer. Math. 38(3), 612–617 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Psihoyios, G.: A general formula for the stability functions of a group of implicit advanced step-point (IAS) methods. Math. Comput. Model. 46(1–2), 214–224 (2007)

    MATH  Google Scholar 

  28. Nigro, A., Ghidoni, A., Rebay, S., Bassi, F.: Modified extended BDF scheme for the discontinuous Galerkin solution of unsteady compressible flows. Int. J. Numer. Methods Fluids 76(9), 549–574 (2014)

    MathSciNet  Google Scholar 

  29. Nigro, A., De Bartolo, C., Bassi, F., Ghidoni, A.: Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier–Stokes equations. J. Comput. Phys. 276, 136–162 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2002)

    MATH  Google Scholar 

  31. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference, p. 1596 (1991)

  32. Jameson, A.: Evaluation of fully implicit Runge Kutta schemes for unsteady flow calculations. J. Sci. Comput. 73(2–3), 819–852 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Kennedy, C.A., Carpenter, M.H.: Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review. Tech. Rep. NASA/TM–2016–219173, NASA (2016)

  34. Baker, A.J., Iannelli. G.S.: A stiffly-stable implicit Runge-Kutta algorithm for CFD applications. In: 26th AIAA Aerospace Sciences Meeting, AIAA Paper 88-0416 (1988)

  35. Lang, J., Verwer, J.: ROS3P—an accurate third-order Rosenbrock solver designed for parabolic problems. BIT Numer. Math. 41(4), 731–738 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Rang, J., Angermann, L.: New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numer. Math. 45(4), 761–787 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Rang, J.: An analysis of the Prothero–Robinson example for constructing new DIRK and ROW methods. J. Comput. Appl. Math. 262, 105–114 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications. Preprint/Fachbereich Mathematik, Technische Hochschule Darmstadt, vol. 1741 (1995)

  39. Tranquilli, P., Sandu, A.: Rosenbrock–Krylov methods for large systems of differential equations. SIAM J. Sci. Comput. 36(3), A1313–A1338 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Rang, J.: Improved traditional Rosenbrock–Wanner methods for stiff ODEs and DAEs. J. Comput. Appl. Math. 286, 128–144 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Liu, X., Xia, Y., Luo, H., Xuan, L.: A comparative study of Rosenbrock-type and implicit Runge-Kutta time integration for discontinuous Galerkin method for unsteady 3D compressible Navier–Stokes equations. Commun. Comput. Phys. 20(4), 1016–1044 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Franciolini, M., Crivellini, A., Nigro, A.: On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows. Comput. Fluids 159, 276–294 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Wang, L., Yu, M.: On the parallel implementation and performance study of high-order Rosenbrock-type implicit Runge–Kutta methods for the FR/CPR solutions of the Navier–Stokes equations. In: 2018 AIAA Aerospace Sciences Meeting, AIAA-2018-1095 (2018)

  45. Blom, D.S., Birken, P., Bijl, H., Kessels, F., Meister, A., van Zuijlen, A.H.: A comparison of Rosenbrock and ESDIRK methods combined with iterative solvers for unsteady compressible flows. Adv. Comput. Math. 42(6), 1401–1426 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Sarshar, A., Tranquilli, P., Pickering, B., McCall, A., Roy, C.J., Sandu, A.: A numerical investigation of matrix-free implicit time-stepping methods for large CFD simulations. Comput. Fluids 159, 53–63 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier–Stokes equations. SIAM J. Sci. Comput. 30, 2709–2733 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    MathSciNet  MATH  Google Scholar 

  49. Gao, H., Wang, Z., Huynh, H.: Differential formulation of discontinuous Galerkin and related methods for the Navier–Stokes equations. Commun. Comput. Phys. 13(4), 1013–1044 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Mulder, W.A., Van Leer, B.: Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys. 59(2), 232–246 (1985)

    MathSciNet  MATH  Google Scholar 

  51. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11-Revision 3.7, Argonne National Laboratory (2016)

  53. Sharov, D., Luo, H., Baum, J., Löhner, R.: Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cache-based parallel computers. In: 38th Aerospace Sciences Meeting and Exhibit, p. 927 (2000)

  54. Franciolini, M., Botti, L., Colombo, A., Crivellini, A.: \(p\)-Multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows (2018). arXiv:1809.00866

  55. Wang, L., Yu, M.: An Implicit high-order preconditioned flux reconstruction method for low-mach-number flow simulation with dynamic meshes. Int. J. Numer. Methods Fluids 91, 348–366 (2019)

    MathSciNet  Google Scholar 

  56. Van Rees, W.M., Leonard, A., Pullin, D., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high reynolds numbers. J. Comput. Phys. 230(8), 2794–2805 (2011)

    MathSciNet  MATH  Google Scholar 

  57. Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72, 811–845 (2013)

    MathSciNet  Google Scholar 

  58. Beck, A.D., Bolemann, T., Flad, D., Frank, H., Gassner, G.J., Hindenlang, F., Munz, C.-D.: High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)

    MathSciNet  Google Scholar 

  59. Galbraith, M., Visbal, M.: Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, p. 225 (2008)

  60. Selig, M.S.: Summary of low speed airfoil data, vol. 1. SoarTech Publications, Virginia Beach (1995)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Office of Naval Research through the award N00014-16-1-2735, and the faculty startup support from the department of mechanical engineering at the University of Maryland, Baltimore County (UMBC). The hardware used in the computational studies is part of the UMBC High Performance Computing Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (Grant Nos. CNS-0821258, CNS-1228778, and OAC-1726023) and the SCREMS program (Grant No. DMS-0821311), with additional substantial support from UMBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meilin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients of ESDIRK and ROW methods investigated in this study are documented here for completeness.

See Tables 5 and 6.

Table 5 Coefficients of ESDIRK methods
Table 6 Coefficients of ROW methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, M. Comparison of ROW, ESDIRK, and BDF2 for Unsteady Flows with the High-Order Flux Reconstruction Formulation. J Sci Comput 83, 39 (2020). https://doi.org/10.1007/s10915-020-01222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01222-z

Keywords

Navigation