Skip to main content
Log in

Potential Molecular Mechanism and Biomarker Investigation for Spinal Cord Injury Based on Bioinformatics Analysis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

This study aimed to explore the detailed molecular mechanism and biomarkers in spinal cord injury (SCI). Gene expression profiles of GSE125630 were downloaded from the Gene Expression Omnibus (GEO) database, and comprised 14 spinal cord tissues, including contusion SCI group (n = 6, unexercised), complete transection group (n = 4, unexercised), and uninjured control group (n = 4, unexercised). Differentially expressed gene (DEG) and time-series gene investigations, functional enrichment analysis, protein–protein interaction (PPI) network construction, characteristic gene-related disease analysis, and TF-target gene interaction studies were performed. A total of 122 DEGs and 409 DEGs were respectively identified in contusion SCI versus control group and complete transection versus control group, respectively. The PPI network investigated 16 characteristic genes including corticotropin-releasing hormone (CRH), tyrosine hydroxylase (TH), and neurotensin (NTS). These genes were mainly enriched in functions involving response to ethanol, corticosterone, and estradiol. Eventually, a TF-target gene interaction network was constructed with nine TFs [including activating transcription factor 3 (ATF3)] and 10 characteristic genes. The results indicate that regulation of osteoblast differentiation and positive regulation of the BMP signaling pathway may be suppressed in the process of SCI. TH may play a pivotal role in the progression of SCI. In addition, DEGs such as CRH and NTS may be novel targets for SCI therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235

    CAS  PubMed  Google Scholar 

  • Allison DJ, Thomas A, Beaudry KM, Ditor DS (2016) Targeting inflammation as a treatment modality for neuropathic pain in spinal cord injury: a randomized clinical trial. J Neuroinflammation 13:152–152

    PubMed  PubMed Central  Google Scholar 

  • Alysandratos KD, Asadi S, Angelidou A et al (2012) Neurotensin and CRH interactions augment human mast cell activation. PLoS One 7:e48934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson AJ, Piltti KM, Hooshmand MJ, Nishi RA, Cummings BJ (2017) Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports 8:249–263

    PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball C, Blake J et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83

    Google Scholar 

  • Cepeda MS, Bonney I, Moyano J, Carr DB (2004) Corticotropin-releasing hormone (CRH) produces analgesia in a thermal injury model independent of its effect on systemic beta-endorphin and corticosterone. Regul Pept 118:39–43

    CAS  PubMed  Google Scholar 

  • Chariker JH, Gomes C, Brabazon F et al (2019) Transcriptome of dorsal root ganglia caudal to a spinal cord injury with modulated behavioral activity. Sci Data 6:019–0088

    Google Scholar 

  • Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Zhao P, Jia C et al (2015) Local expression and role of BMP-2/4 in injured spinal cord. Genet Mol Res 14:9109–9117

    CAS  PubMed  Google Scholar 

  • DiFiglia M, Aronin N, Leeman SE (1982) Immunocytochemical study of neurotensin localization in the monkey spinal cord. Ann N Y Acad Sci 400:405–408

    Google Scholar 

  • Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7:191

    PubMed  PubMed Central  Google Scholar 

  • Finnerup NB, Jensen TS (2004) Spinal cord injury pain – mechanisms and treatment. Eur J Neurol 11:73–82

    CAS  PubMed  Google Scholar 

  • Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A (2012) Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 35:293–311

    CAS  PubMed  Google Scholar 

  • Hayakawa K, Okazaki R, Ishii K et al (2012) Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord 50:493–496

  • He J, Zhao J, Peng X, Shi X, Zong S, Zeng G (2017) Molecular mechanism of MiR-136-5p targeting NF-κB/A20 in the IL-17-mediated inflammatory response after spinal cord injury. Cell Physiol Biochem 44:1224–1241

    CAS  PubMed  Google Scholar 

  • Herman PE, Papatheodorou A, Bryant SA et al (2018) Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 8:742

    PubMed  PubMed Central  Google Scholar 

  • Hou Y-N, Ding W-Y, Shen Y, Yang D-L, Wang L-F, Zhang P (2015) Effect of hyperbaric oxygen on MMP9/2 expression and motor function in rats with spinal cord injury. Int J Clin Exp Med 8:14926–14934

  • Hu J-Z, Wang X-K, Cao Y et al (2017) Tetramethylpyrazine facilitates functional recovery after spinal cord injury by inhibiting MMP2, MMP9, and vascular endothelial cell apoptosis. Curr Neurovasc Res 14:110–116

  • Huang dW, Sherman B, Lempicki R (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    CAS  Google Scholar 

  • Huang S-B, Zhao H-D, Wang L-F et al (2017) Intradiencephalon injection of histamine inhibited the recovery of locomotor function of spinal cord injured zebrafish. Biochem Biophys Res Commun 489:275–280

    CAS  PubMed  Google Scholar 

  • Jain NB, Ayers GD, Peterson EN et al (2015) Traumatic spinal cord injury in the United States, 1993-2012. JAMA 313:2236–2243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S-D, Jiang L-S, Dai L-Y (2006) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol 65:555–565

    CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai M, Fukumitsu H, Soumiya H, Furukawa S (2011) Ethanol extract of chinese propolis facilitates functional recovery of locomotor activity after spinal cord injury. Evidence-Based Complementary and Alternative Medicine 2011:749627

  • Ketchesin KD, Stinnett GS, Seasholtz AF (2017) Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans. Stress 20:449–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EH, Ryu DH, Hwang S (2011) The expression of corticotropin-releasing factor and its receptors in the spinal cord and dorsal root ganglion in a rat model of neuropathic pain. Anatomy & cell biology 44:60–68

    Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303

    CAS  PubMed  Google Scholar 

  • Lee HM, Joo BS, Lee CH, Kim HY, Ock JH, Lee YS (2015) Effect of glucagon-like Peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. J Menopausal Med 21:93–103

    PubMed  PubMed Central  Google Scholar 

  • Lei X, Wu S, Ge L, Zhang A (2013) Clustering and overlapping modules detection in PPI network based on IBFO. Proteomics 13:278–290

    CAS  PubMed  Google Scholar 

  • Li B, Lee C, Filler T et al (2017) Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep 7:46616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C-W, Chen B, Huang K-L, Dai Y-S, Teng H-L (2016) Inhibition of autophagy by estradiol promotes locomotor recovery after spinal cord injury in rats. Neurosci Bull 32:137–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H-J, Yan H, Yan J et al (2016) Substance P promotes the proliferation, but inhibits differentiation and mineralization of osteoblasts from rats with spinal cord injury via RANKL/OPG system. PLoS One 11:e0165063

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Figley S, Spratt SK et al (2010) An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis 37:384–393

    CAS  PubMed  Google Scholar 

  • Oliva JM, Ortiz S, Pérez-Rial S, Manzanares J (2008) Time dependent alterations on tyrosine hydroxylase, opioid and cannabinoid CB1 receptor gene expressions after acute ethanol administration in the rat brain. Eur Neuropsychopharmacol 18:373–382

    CAS  PubMed  Google Scholar 

  • Pantović R, Draganić P, Eraković V, Blagović B, Milin Č, Simonić A (2004) Spinal cord injury in rabbits: the influence of ethanol on the free fatty acid level-determination by gas chromatography. Clin Chem Lab Med 42:A82–A82

    Google Scholar 

  • Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  • Rylett P, Dean H, Lee M (1976) Brain tyrosine hydroxylase activity and systolic blood pressure in rats treated with either deoxycorticosterone and salt or angiotensin. J Pharm Pharmacol 28:559–562

    CAS  PubMed  Google Scholar 

  • Sengelaub DR, Han Q, Liu N-K et al (2018) Protective effects of estradiol and dihydrotestosterone following spinal cord injury. J Neurotrauma 35:825–841

    PubMed  PubMed Central  Google Scholar 

  • Shimoyama M, De Pons J, Hayman GT et al (2014) The rat genome database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res 43:D743–D750

    PubMed  PubMed Central  Google Scholar 

  • Simone J, Bogue EA, Bhatti DL et al (2015) Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus. Psychoneuroendocrinology 62:265–278

    CAS  PubMed  Google Scholar 

  • Stanzione P, Zieglgänsberger W (1983) Action of neurotensin on spinal cord neurons in the rat. Brain Res 268:111–118

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    CAS  PubMed  Google Scholar 

  • Tran S, Facciol A, Nowicki M, Chatterjee D, Gerlai R (2017) Acute alcohol exposure increases tyrosine hydroxylase protein expression and dopamine synthesis in zebrafish. Behav Brain Res 317:237–241

    CAS  PubMed  Google Scholar 

  • Tumurbaatar T, Kanasaki H, Oride A, Hara T, Okada H, Tsutsui K (2018) Action of neurotensin, CRH, and RFRP-3 in E2-induced negative feedback control: studies using a mouse ARC hypothalamic cell model. Biol Reprod 99:1216–1226

    PubMed  Google Scholar 

  • Urso ML, Chen Y, Scrimgeour AG, Lee PC, Lee KF, Clarkson PM (2007) Alterations in mRNA expression and protein products following spinal cord injury in humans. J Physiol 579:877–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L-F, Huang S-B, Zhao H-D, Liu C-J, Yao L, Shen Y-Q (2017) Activating transcription factor 3 promotes spinal cord regeneration of adult zebrafish. Biochem Biophys Res Commun 488:522–527

    CAS  PubMed  Google Scholar 

  • Wang W, Solc M, Ji P, Dow KE (2004) Corticotropin-releasing hormone potentiates neural injury induced by oxygen-glucose deprivation: a possible involvement of microglia. Neurosci Lett 371:133–137

    CAS  PubMed  Google Scholar 

  • Welling LC, Figueiredo EG (2010) Microglia, corticotropin-releasing hormone, and spinal cord injury. World neurosurgery 4:388–389

    Google Scholar 

  • Wu Y-P, Cao C, Wu Y-F et al (2017) Activating transcription factor 3 represses cigarette smoke-induced IL6 and IL8 expression via suppressing NF-κB activation. Toxicol Lett 270:17–24

  • Yaksh T, Schmauss C, Micevych P, Abay E, Go V (1982) Pharmacological studies on the application, disposition, and release of neurotensin in the spinal cord. Ann N Y Acad Sci 400:228–243

    CAS  PubMed  Google Scholar 

  • Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Yang H-L, Cen J-N (2011) Effect of bone mesenchymal stem cells transplantation on adrenocorticotropic hormone and corticosterone in rats with spinal cord injury. Chin J Spine Spinal Cord 21:239–243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Wang.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhongsen Li and Fan Yu should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, F., Yu, X. et al. Potential Molecular Mechanism and Biomarker Investigation for Spinal Cord Injury Based on Bioinformatics Analysis. J Mol Neurosci 70, 1345–1353 (2020). https://doi.org/10.1007/s12031-020-01549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01549-0

Keywords

Navigation