Skip to main content
Log in

Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, the nitrogen and fluorine co-doped graphene hydrogel (NFGH) with three-dimensional (3D) porous structure was prepared through a simple one-step hydrothermal method using graphene oxide and ammonium fluoride. The interconnected 3D skeleton porous structure synthesized by the self-assembly of graphene can effectively inhibit the agglomeration of graphene, which will provide more diffusion paths for the electrolyte ions. Benefiting from the wettability of nitrogen functional groups, the nitrogen doping effectively reduces the hydrophobicity of electrode caused by the doping of fluorine. Due to the 3D porous structure of NFGH and the incorporation of nitrogen and fluorine, the NFGH exhibits excellent supercapacitive performance. The maximum specific capacitance of NFGH electrode is up to 366 F g−1 in the aqueous electrolyte, and 98% capacitance can be maintained even after 10,000 cycles. These excellent supercapacitive performances demonstrate that the NFGH has a great potential for application in high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. C. Wang, C. Wu, S. Chen, X. Zhao, S. Li, Carbon, 125 (2017)

    Google Scholar 

  3. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280

    Article  CAS  Google Scholar 

  4. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  Google Scholar 

  5. Chen, Chaoji, Zhang, Ying, Li, Yiju, Dai, Jiaqi, Song, (2000)

  6. Liu D, Fu C, Zhang N, Zhou H, Kuang Y (2016) Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors. Electrochim Acta 213:291–297

    Article  CAS  Google Scholar 

  7. Zhou J, Xu L, Li L, Li X (2019) Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. J Colloid Interface Sci 545:25–34

    Article  CAS  Google Scholar 

  8. Sevilla M, Ferrero GA, Diez N, Fuertes AB (2018) One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 131:193–200

    Article  CAS  Google Scholar 

  9. Li J, Zhang G, Fu C, Deng L, Sun R, Wong C-P (2017) Facile preparation of nitrogen/sulfur co-doped and hierarchical porous graphene hydrogel for high-performance electrochemical capacitor. J Power Sources 345:146–155

    Article  CAS  Google Scholar 

  10. Xu J, Yuan N, Razal JM, Zheng Y, Zhou X, Ding J, Cho K, Ge S, Zhang R, Gogotsi Y, Baughman RH (2019) Temperature-independent capacitance of carbon-based supercapacitor from −100 to 60 °C. Energy Storage Materials 22:323–329

    Article  Google Scholar 

  11. Wang X, Xu J, Razal JM, Yuan N, Zhou X, Wang X, Ding J, Qin S, Ge S, Gogotsi Y (2019) Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of −100 °C. J Mater Chem A 7:16339–16346

    Article  CAS  Google Scholar 

  12. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G (2011) Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 7:1108–1117

    Article  CAS  Google Scholar 

  13. Yan P, Zhang X, Hou M, Zhang R, Liu K, Liu T, Liu Y (2018) Fabrication and enhanced electrochemical performance of a nitrogen-doped porous graphene/nanometer-sized carbide-derived carbon composite for supercapacitors. Ionics 24:3949–3955

    Article  CAS  Google Scholar 

  14. Ma Y, Zhang X, Liang Z, Wang C, Sui Y, Zheng B, Ye Y, Ma W, Zhao Q, Qin C (2020) B/P/N/O co-doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochim Acta 337:135800

    Article  CAS  Google Scholar 

  15. Liu M, Huo S, Xu M, Wu L, Liu M, Xue Y, Yan Y-M (2018) Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochim Acta 274:389–399

    Article  CAS  Google Scholar 

  16. Lv Y, Yang L, Cao D (2017) ACS Appl Mater Interfaces 38:32859–32867

    Article  Google Scholar 

  17. Kim T, Lim S, Kwon K, Hong S-H, Qiao W, Rhee CK, Yoon S-H, Mochida I (2006) Electrochemical capacitances of well-defined carbon surfaces. Langmuir 22:9086–9088

    Article  CAS  Google Scholar 

  18. Yuan W, Zhou Y, Li Y, Li C, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:2248

    Article  Google Scholar 

  19. Bulusheva LG, Tur VA, Fedorovskaya EO, Asanov IP, Pontiroli D, Riccò M, Okotrub AV (2014) Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon 78:137–146

    Article  CAS  Google Scholar 

  20. Deng D, Chen N, Xiao X, Du S, Wang Y (2016) Ionics 23:121–129

    Article  Google Scholar 

  21. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  22. Zhang X, Gao X, Wu Z, Zhu M, Jiang Q, Zhou S, Huang Y, Rao Z (2019) High-capacitance supercapacitor based on nitrogen-doped porous carbons-sandwiched graphene hybrid frameworks. Ionics 25:6017–6023

    Article  CAS  Google Scholar 

  23. Yan P, Xu J, Zhang X, Wu C, Gu Y, Zhang R (2016) Fabrication and enhanced supercapacitive performance of graphene/nano-carbide derived carbon composites. Int J Hydrog Energy 41:14820–14829

    Article  CAS  Google Scholar 

  24. Hu J, He W, Qiu S, Xu W, Mai Y, Guo F (2019) Nitrogen-doped hierarchical porous carbons prepared via freeze-drying assisted carbonization for high-performance supercapacitors. Appl Surf Sci 496:143643

    Article  CAS  Google Scholar 

  25. Wang M, Yang J, Liu S, Li M, Hu C, Qiu J (2020) Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J Colloid Interface Sci 560:69–76

    Article  CAS  Google Scholar 

  26. Wang Q, Yan J, Fan Z (2014) Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochim Acta 146:548–555

    Article  CAS  Google Scholar 

  27. Zhang X, Jin J, Yan P, Xu J, Zhang R, Wu C (2015) Structure and electrochemical performance of graphene/porous carbon coated carbon nanotube composite for supercapacitors. Mater Lett 160:190–193

    Article  CAS  Google Scholar 

  28. An H, Li Y, Long P, Gao Y, Qin C, Cao C, Feng Y, Feng W (2016) Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J Power Sources 312:146–155

    Article  CAS  Google Scholar 

  29. Mostazo-López MJ, Ruiz-Rosas R, Morallón E, Cazorla-Amorós D (2016) Nitrogen doped superporous carbon prepared by a mild method. Enhancement of supercapacitor performance. Int J Hydrog Energy 41:19691–19701

    Article  Google Scholar 

  30. Chen H, Zhou M, Wang Z, Zhao S, Guan S (2014) Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. Electrochim Acta 148:187–194

    Article  CAS  Google Scholar 

  31. Liu M, Niu J, Zhang Z, Dou M, Wang F (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372

    Article  CAS  Google Scholar 

  32. Jiao C, Zhang ZJ, Chen XY (2019) Nitrogen and fluorine dual-doped carbon nanosheets for high-performance supercapacitors. Nano 14:1950042

    Article  CAS  Google Scholar 

  33. Lin Z, Liu Y, Yao Y, Hildreth OJ, Li Z, Moon K, Wong C-p (2011) Superior capacitance of functionalized graphene. J Phys Chem C 115:7120–7125

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Youth Top-notch Talent Project of Hebei Education Department (BJ2018205), Hebei Education Department (2018GJJG519), Young Talents Program of Xingtai Science and Technology Bureau (2018ZZ032), Xingtai City Science and Technology Bureau (2019ZC012), and Innovative Entrepreneurial Training Program of Hebei Province (S201910104017), which are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Yan, L., Gao, J. et al. Nitrogen and fluorine co-doped graphene hydrogel for high-performance supercapacitors. Ionics 26, 4705–4712 (2020). https://doi.org/10.1007/s11581-020-03593-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03593-7

Keywords

Navigation