Skip to main content
Log in

Vibration analysis of porous metal foam plates rested on viscoelastic substrate

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the vibration problem of a rectangular plate rested on a viscoelastic substrate and consisting of porous metal foam is solved via an analytical method with respect to the influences of various porosity distributions. Three types of porosity distribution across the thickness are covered, namely uniform, symmetric and asymmetric. The strain–displacement relations of the plate are assumed to be derived on the basis of a refined higher-order shear deformation plate theory. Then, the achieved relations will be incorporated with the Hamilton’s principle in order to reach the Euler–Lagrange equations of the structure. Next, the well-known Galerkin’s method is utilized to calculate the natural frequencies of the system. The influences of both simply supported and clamped boundary conditions are included. In order to show the accuracy of the presented method, the results of present research are compared with those reported by former published papers. The reported results show that an increase in the porosity coefficient can dramatically decrease the frequency of the plate. Also, the stiffness of the system can be lesser decreased, while a symmetrically porous metal foam is used to manufacture the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jabbari M, Mojahedin A, Khorshidvand AR, Eslami MR (2013) Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech 140(2):287–295

    Article  Google Scholar 

  2. Jabbari M, Hashemitaheri M, Mojahedin A, Eslami MR (2014) Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials. J Therm Stresses 37(2):202–220

    Article  Google Scholar 

  3. Wattanasakulpong N, Ungbhakorn V (2014) Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol 32(1):111–120

    Article  Google Scholar 

  4. Chen D, Yang J, Kitipornchai S (2015) Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos Struct 133:54–61

    Article  Google Scholar 

  5. Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 108:14–22

    Article  Google Scholar 

  6. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48

    Article  Google Scholar 

  7. Rezaei AS, Saidi AR (2016) Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Compos B Eng 91:361–370. https://doi.org/10.1016/B978-0-7506-8560-3.X0001-1

    Article  Google Scholar 

  8. Atmane HA, Tounsi A, Bernard F (2017) Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des 13(1):71–84

    Article  Google Scholar 

  9. Barati MR, Zenkour AM (2018) Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. J Vib Control 24(10):1910–1926

    Article  MathSciNet  Google Scholar 

  10. Toan Thang P, Nguyen-Thoi T, Lee J (2018) Mechanical stability of metal foam cylindrical shells with various porosity distributions. Mech Adv Mater Struct 27(4):1–9

    Google Scholar 

  11. Vaidya UK, Pillay S, Bartus S, Ulven CA, Grow DT, Mathew B (2006) Impact and post-impact vibration response of protective metal foam composite sandwich plates. Mater Sci Eng, A 428(1–2):59–66

    Article  Google Scholar 

  12. Debowski D, Magnucki K, Malinowski M (2010) Dynamic stability of a metal foam rectangular plate. Steel Compos Struct 10(2):151–168

    Article  Google Scholar 

  13. Magnucka-Blandzi E (2011) Mathematical modelling of a rectangular sandwich plate with a metal foam core. J Theor Appl Mech 49(2):439–455

    Google Scholar 

  14. Qin QH, Wang TJ (2012) Plastic analysis of metal foam core sandwich beam transversely loaded by a flat punch: combined local denting and overall deformation. J Appl Mech 79(4):041010

    Article  Google Scholar 

  15. Jasion P, Magnucka-Blandzi E, Szyc W, Magnucki K (2012) Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core. Thin-Walled Struct 61:154–161

    Article  Google Scholar 

  16. Qin Q, Zheng X, Zhang J, Yuan C, Wang TJ (2018) Dynamic response of square sandwich plates with a metal foam core subjected to low-velocity impact. Int J Impact Eng 111:222–235

    Article  Google Scholar 

  17. Ebrahimi F, Dabbagh A, Rastgoo A (2019) Vibration analysis of porous metal foam shells rested on an elastic substrate. J Strain Anal Eng Des 54(3):199–208. https://doi.org/10.1177/0309324719852555

    Article  Google Scholar 

  18. Ebrahimi F, Dabbagh A (2019) An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Eng Comput. https://doi.org/10.1007/s00366-019-00840-y

    Article  Google Scholar 

  19. Ebrahimi F, Dabbagh A, Rastgoo A (2019) Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1692665

    Article  Google Scholar 

  20. Ebrahimi F, Dabbagh A (2020) Mechanics of nanocomposites: homogenization and analysis, 1st ed. CRC Press, Boca Raton. https://doi.org/10.1201/9780429316791

    Book  Google Scholar 

  21. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos B Eng 159:231–247. https://doi.org/10.1016/j.compositesb.2018.09.051

    Article  Google Scholar 

  22. Lai WM, Rubin DH, Krempl E, Rubin D (2009) Introduction to continuum mechanics, 4th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  23. Thai H-T, Park T, Choi D-H (2013) An efficient shear deformation theory for vibration of functionally graded plates. Arch Appl Mech 83(1):137–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The components of stiffness and mass matrices can be calculated by:

$$\begin{aligned} k_{{11}} & = A_{{11}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial ^{3} X_{m} (x)}}{{\partial x^{3} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + A_{{66}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial X_{m} (x)}}{{\partial x}}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{12}} & = \left( {A_{{12}} + A_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial X_{m} (x)}}{{\partial x}}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{13}} & = - B_{{11}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial ^{3} X_{m} (x)}}{{\partial x^{3} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - \left( {B_{{12}} + 2B_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial X_{m} (x)}}{{\partial x}}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{14}} & = - B_{{11}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial ^{3} X_{m} (x)}}{{\partial x^{3} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - \left( {B_{{12}}^{s} + 2B_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{{\partial x}}Y_{n} (y)\frac{{\partial X_{m} (x)}}{{\partial x}}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{21}} & = \left( {A_{{12}} + A_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial Y_{n} (y)}}{{\partial y}}{\text{d}}x} {\text{d}}y} , \\ k_{{22}} & = A_{{66}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial Y_{n} (y)}}{{\partial y}}{\text{d}}x} {\text{d}}y} + A_{{22}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}X_{m} (x)\frac{{\partial ^{3} Y_{n} (y)}}{{\partial y^{3} }}{\text{d}}x} {\text{d}}y} , \\ k_{{23}} & = - \left( {B_{{12}} + 2B_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial Y_{n} (y)}}{{\partial y}}{\text{d}}x} {\text{d}}y} - B_{{22}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}X_{m} (x)\frac{{\partial ^{3} Y_{n} (y)}}{{\partial y^{3} }}{\text{d}}x} {\text{d}}y} , \\ k_{{24}} & = - \left( {B_{{12}}^{s} + 2B_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial Y_{n} (y)}}{{\partial y}}{\text{d}}x} {\text{d}}y} - B_{{22}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{{\partial y}}X_{m} (x)\frac{{\partial ^{3} Y_{n} (y)}}{{\partial y^{3} }}{\text{d}}x} {\text{d}}y} , \\ k_{{31}} & = B_{{11}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \left( {B_{{12}} + 2B_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{32}} & = \left( {B_{{12}} + 2B_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} + B_{{22}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} , \\ k_{{33}} & = - D_{{11}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - 2\left( {D_{{12}} + 2D_{{66}} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} \\ & \quad - \,D_{{22}} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} - k_{w} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,k_{p} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ k_{{34}} & = - D_{{11}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - 2\left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} \\ & \quad - \,D_{{22}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} - k_{w} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,k_{p} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ k_{{41}} & = B_{{11}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \left( {B_{{12}}^{s} + 2B_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ k_{{42}} & = \left( {B_{{12}}^{s} + 2B_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} + B_{{22}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} , \\ k_{{43}} & = - D_{{11}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - 2\left( {D_{{12}}^{s} + 2D_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} \\ & \quad - \,D_{{22}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} - k_{w} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,k_{p} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ k_{{44}} & = - H_{{11}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{4} X_{m} (x)}}{{\partial x^{4} }}Y_{n} (y){\text{d}}x} {\text{d}}y} - 2\left( {H_{{12}}^{s} + 2H_{{66}}^{s} } \right)\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} \\ & \quad - \,H_{{22}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{4} Y_{n} (y)}}{{\partial y^{4} }}{\text{d}}x} {\text{d}}y} + A_{{44}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,A_{{44}}^{s} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} - k_{w} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,k_{p} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial ^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial ^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right) \\ \end{aligned}$$
(40)

and

$$\begin{aligned} m_{11} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y)\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y){\text{d}}x} {\text{d}}y} , \\ m_{13} & = I_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y)\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y){\text{d}}x} {\text{d}}y} , \\ m_{14} & = J_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y)\frac{{\partial X_{m} (x)}}{\partial x}Y_{n} (y){\text{d}}x} {\text{d}}y} , \\ m_{22} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}{\text{d}}x} {\text{d}}y} , \\ m_{23} & = I_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}{\text{d}}x} {\text{d}}y} , \\ m_{24} & = J_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}X_{m} (x)\frac{{\partial Y_{n} (y)}}{\partial y}dx} dy} , \\ m_{31} & = - I_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} , \\ m_{32} & = - I_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ m_{33} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + I_{2} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ m_{34} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + J_{2} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ m_{41} & = - J_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} , \\ m_{42} & = - J_{1} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} , \\ m_{43} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,J_{2} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right), \\ m_{44} & = - I_{0} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y){\text{d}}x} {\text{d}}y} \\ & \quad + \,K_{2} \left( {\int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)\frac{{\partial^{2} X_{m} (x)}}{{\partial x^{2} }}Y_{n} (y){\text{d}}x} {\text{d}}y} + \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)\frac{{\partial^{2} Y_{n} (y)}}{{\partial y^{2} }}{\text{d}}x} {\text{d}}y} } \right) \\ \end{aligned}$$
(41)

and

$$C_{33} = C_{34} = C_{43} = C_{44} = - ic_{d} \int\limits_{0}^{b} {\int\limits_{0}^{a} {X_{m} (x)Y_{n} (y)X_{m} (x)Y_{n} (y)dx} dy}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Dabbagh, A. & Taheri, M. Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Engineering with Computers 37, 3727–3739 (2021). https://doi.org/10.1007/s00366-020-01031-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01031-w

Keywords

Navigation