Skip to main content
Log in

A Dixmier Trace Formula for the Density of States

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A version of Connes trace formula allows to associate a measure on the essential spectrum of a Schrödinger operator with bounded potential. In solid state physics there is another celebrated measure associated with such operators—the density of states. In this paper we demonstrate that these two measures coincide. We show how this equality can be used to give explicit formulae for the density of states in some circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Moreover it can be proved that \(\mathrm{Tr}_\omega \) is a Dixmier trace for every extended limit \(\omega \). This will appear in the upcoming second edition of [27].

  2. This follows from the identity \(\Gamma (z) = \frac{1}{z}\Gamma (z+1)\).

References

  1. Aizenman, M., Warzel, S.: Random Operators: Disorder Effects on Quantum Spectra and Dynamics. Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  2. Aleksandrov, A., Peller, V.: Operator Lipschitz functions. Uspekhi Mat. Nauk 71 (2016), 4(430), 3–106; translation in Russian Math. Surveys 71, 4, 605–702 (2016)

  3. Aleksandrov, A., Peller, V., Potapov, D., Sukochev, F.: Functions of normal operators under perturbations. Adv. Math. 226(6), 5216–5251 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Arazy, J., Barton, T., Friedman, Y.: Operator differentiable functions. Integral Equ. Oper. Theory 13(4), 462–487 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Ayre, P., Cowling, M., Sukochev, F.: Operator Lipschitz estimates in the unitary setting. Proc. Am. Math. Soc. 144(3), 1053–1057 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  7. Birman, M., Solomyak, M.: Operator integration, perturbations and commutators. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), Issled. Lineĭn. Oper. Teorii Funktsiĭ. 17, 34–66, 321; translation in J. Soviet Math. 63(2), 129–148 (1993)

  8. Birman, M., Solomyak, M.: Double operator integrals in a Hilbert space. Integral Equ. Oper. Theory 47(2), 131–168 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Klein, A.: Bounds on the density of states for Schrödinger operators. Invent. Math. 194(1), 41–72 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Brislawn, C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104(4), 1181–1190 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Probability and Its Applications. Birkhäuser Boston Inc, Boston (1990)

    MATH  Google Scholar 

  12. Connes, A.: The action functional in noncommutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Connes, A.: Noncommutative Geometry. Academic Press, Inc., San Diego (1994)

    MATH  Google Scholar 

  14. Connes, A., Levitina, G., McDonald, E., Sukochev, F., Zanin, D.: Noncommutative geometry for symmetric non-self-adjoint operators. J. Funct. Anal. 277(3), 889–936 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Connes, A., Sukochev, F., Zanin, D.: Trace theorem for quasi-Fuchsian groups. Sb. Math. 208(10), 1473–1502 (2017)

    MathSciNet  MATH  Google Scholar 

  16. de Pagter, B., Witvliet, H., Sukochev, F.: Double operator integrals. J. Funct. Anal. 192(1), 52–111 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Doi, S., Iwatsuka, A., Mine, T.: The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields. Math. Z. 237(2), 335–371 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Fack, T.: Sur la notion de valeur caractéristique. J. Oper. Theory 7(2), 307–333 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Gohberg, I., Kreĭn, M.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  20. Gracia-Bondía, J., Várilly, J., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Boston, Inc., Boston (2001)

    MATH  Google Scholar 

  21. Herbst, I.: Spectral and scattering theory for Schrödinger operators with potentials independent of \(|{x}|\). Am. J. Math. 113(3), 509–565 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Herbst, I., Skibsted, E.: Quantum scattering for potentials homogeneous of degree zero. In: Mathematical Results in Quantum Mechanics (Taxco, 2001), Contemp. Math., vol. 307, pp. 163–169. American Mathematical Society, Providence (2002)

  23. Herbst, I., Skibsted, E.: Quantum scattering for potentials independent of \(|{x}|\): asymptotic completeness for high and low energies. Commun. Partial Differ. Equ. 29(3–4), 547–610 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

    MATH  Google Scholar 

  25. Lang, R.: Spectral Theory of Random Schrödinger Operators. A Genetic Introduction. Lecture Notes in Mathematics, 1498. Springer, Berlin (1991)

    Google Scholar 

  26. Levitina, G., Sukochev, F., Zanin, D.: Cwikel estimates revisited. Proc. Lond. Math. Soc. 120(2), 265–304 (2020)

  27. Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications, vol. 46. Walter de Gruyter, Berlin (2012)

    MATH  Google Scholar 

  28. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften, 297. Springer, Berlin (1992)

    MATH  Google Scholar 

  29. Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207(2), 375–389 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York, xv+361 pp (1975)

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1978)

  32. Rudin, W.: Functional Analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill Inc, New York (1991)

    Google Scholar 

  33. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, 265. Springer, Dordrecht (2012)

    Google Scholar 

  34. Sedaev, A., Sukochev, F.: Dixmier measurability in Marcinkiewicz spaces and applications. J. Funct. Anal. 265(12), 3053–3066 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Semenov, E., Sukochev, F., Usachev, A., Zanin, D.: Banach limits and traces on \({\cal{L}}_{1,\infty }\). Adv. Math. 285, 568–628 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Shubin, M.: Spectral theory and the index of elliptic operators with almost-periodic coefficients. Russ. Math. Surv. 34(2), 109–158 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Simon, B.: Trace Ideals and Their Applications. Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence (2005)

    Google Scholar 

  38. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    MATH  Google Scholar 

  39. Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence (2005)

    MATH  Google Scholar 

  40. Sukochev, F., Zanin, D.: A \(C^*\)-algebraic approach to the principal symbol. I. J. Oper. Theory 80(2), 101–142 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Sukochev, F., Zanin, D.: The Connes character formula for locally compact spectral triples. arXiv:1803.01551

  42. Widder, D.: The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referee for helpful comments and suggestions. F. S. is partially supported by the Australian Research Council Grant FL170100052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. McDonald.

Additional information

Communicated by M. Salmhofer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azamov, N., McDonald, E., Sukochev, F. et al. A Dixmier Trace Formula for the Density of States. Commun. Math. Phys. 377, 2597–2628 (2020). https://doi.org/10.1007/s00220-020-03756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03756-7

Navigation