Skip to main content
Log in

Existence and multiplicity for an elliptic problem with critical growth in the gradient and sign-changing coefficients

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset \mathbb {R}^{N}\), \(N \ge 2\), be a smooth bounded domain. We consider the boundary value problem

where \(c_{\lambda }\) and h belong to \(L^q(\Omega )\) for some \(q > N/2\), \(\mu \) belongs to \(\mathbb {R}{\setminus } \{0\}\) and we write \(c_{\lambda }\) under the form \(c_{\lambda }:= \lambda c_{+} - c_{-}\) with \(c_{+} \gneqq 0\), \(c_{-} \ge 0\), \(c_{+} c_{-} \equiv 0\) and \(\lambda \in \mathbb {R}\). Here \(c_{\lambda }\) and h are both allowed to change sign. As a first main result we give a necessary and sufficient condition which guarantees the existence (and uniqueness) of solution to (\(P_{\lambda }\)) when \(\lambda \le 0\). Then, assuming that \((P_0)\) has a solution, we prove existence and multiplicity results for \(\lambda > 0\). Our proofs rely on a suitable change of variable of type \(v = F(u)\) and the combination of variational methods with lower and upper solution techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222(1), 21–62 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations. J. Funct. Anal. 268(5), 1153–1166 (2015)

    Article  MathSciNet  Google Scholar 

  4. Arcoya, D., Boccardo, L.: Regularizing effect of \(L^q\) interplay between coefficients in some elliptic equations. J. Math. Pures Appl. 111, 106–125 (2018)

    Article  MathSciNet  Google Scholar 

  5. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl. 420(1), 772–780 (2014)

    Article  MathSciNet  Google Scholar 

  6. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal. 268(8), 2298–2335 (2015)

    Article  MathSciNet  Google Scholar 

  7. Barles, G., Blanc, A.-P., Georgelin, C., Kobylanski, M.: Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(3), 381–404 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Barles, G., Murat, F.: Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Ration. Mech. Anal. 133(1), 77–101 (1995)

    Article  MathSciNet  Google Scholar 

  9. Boccardo, L., Murat, F., Puel, J.-P.: Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982), volume 84 of Res. Notes in Math., pages 19–73. Pitman, Boston, Mass.-London (1983)

  10. Boccardo, L., Murat, F., Puel, J.-P.: Quelques propriétés des opérateurs elliptiques quasi linéaires. C. R. Acad. Sci. Paris Sér. I Math., 307(14), 749–752 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Boccardo, L., Murat, F., Puel, J.-P.: \(L^\infty \) estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23(2), 326–333 (1992)

    Article  MathSciNet  Google Scholar 

  12. Brezis, H., Nirenberg, L.: \(H^1\) versus \(C^1\) local minimizers. C. R. Acad. Sci. Paris Sér. I Math., 317(5), 465–472 (1993)

    MathSciNet  MATH  Google Scholar 

  13. De Coster, C., Fernández, A.J.: Existence and multiplicity for elliptic \(p\)-Laplacian problems with critical growth in the gradient. Calc. Var. Partial Differ. Equ., 57(3):Art. 89, pp. 42 (2018)

  14. De Coster, C., Fernández, A.J., Jeanjean, L.: A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient. J. Math. Pures Appl. 9(132), 308–333 (2019)

    Article  MathSciNet  Google Scholar 

  15. De Coster, C., Jeanjean, L.: Multiplicity results in the non-coercive case for an elliptic problem with critical growth in the gradient. J. Differ. Equ. 262(10), 5231–5270 (2017)

    Article  MathSciNet  Google Scholar 

  16. de Figueiredo, D.G., Solimini, S.: A variational approach to superlinear elliptic problems. Comm. Partial Differ. Equ. 9(7), 699–717 (1984)

    Article  MathSciNet  Google Scholar 

  17. Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42(7), 1309–1326 (2000)

    Article  MathSciNet  Google Scholar 

  18. Ghoussoub, N.: Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1993)

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin (2001)

    Book  Google Scholar 

  20. Godoy, T., Gossez, J.-P., Paczka, S.: A minimax formula for the principal eigenvalues of Dirichlet problems and its applications. In: Proceedings of the 2006 International Conference in honor of Jacqueline Fleckinger, volume 16 of Electron. J. Differ. Equ. Conf., pp. 137–154 (2007)

  21. Grenon, N., Murat, F., Porretta, A.: Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms. C. R. Math. Acad. Sci. Paris 342(1), 23–28 (2006)

    Article  MathSciNet  Google Scholar 

  22. Grenon, N., Murat, F., Porretta, A.: A priori estimates and existence for elliptic equations with gradient dependent terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13(1), 137–205 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Hamel, F., Russ, E.: Comparison results and improved quantified inequalities for semilinear elliptic equations. Math. Ann. 367(1–2), 311–372 (2017)

    Article  MathSciNet  Google Scholar 

  24. Jeanjean, L., Ramos Quoirin, H.: Multiple solutions for an indefinite elliptic problem with critical growth in the gradient. Proc. Am. Math. Soc., 144(2), 575–586 (2016)

    Article  MathSciNet  Google Scholar 

  25. Jeanjean, L., Sirakov, B.: Existence and multiplicity for elliptic problems with quadratic growth in the gradient. Commun. Partial Differ. Equ. 38(2), 244–264 (2013)

    Article  MathSciNet  Google Scholar 

  26. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  Google Scholar 

  27. Kazdan, J.L., Kramer, R.J.: Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. Commun. Pure Appl. Math. 31(5), 619–645 (1978)

    Article  MathSciNet  Google Scholar 

  28. Kim, S., Sakellaris, G.: Green’s function for second order elliptic equations with singular lower order coefficients. Commun. Partial Differ. Equ. 44(3), 228–270 (2019)

    Article  MathSciNet  Google Scholar 

  29. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York-London (1968)

    MATH  Google Scholar 

  30. López-Gómez, J.: The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems. J. Differ. Equ. 127(1), 263–294 (1996)

    Article  MathSciNet  Google Scholar 

  31. Magliaro, M., Mari, L., Rigoli, M.: On a paper of Berestycki–Hamel–Rossi and its relations to the weak maximum principle at infinity, with applications. Rev. Mat. Iberoam. 34(2), 915–936 (2018)

    Article  MathSciNet  Google Scholar 

  32. Nornberg, G., Sirakov, B.: A priori bounds and multiplicity for fully nonlinear equations with quadratic growth in the gradient. J. Funct. Anal. 276(6), 1806–1852 (2019)

    Article  MathSciNet  Google Scholar 

  33. Phuc, N.C.: Morrey global bounds and quasilinear Riccati type equations below the natural exponent. J. Math. Pures Appl. 102(1), 99–123 (2014)

    Article  MathSciNet  Google Scholar 

  34. Porretta, A.: The “ergodic limit” for a viscous Hamilton-Jacobi equation with Dirichlet conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 21(1), 59–78 (2010)

    Article  MathSciNet  Google Scholar 

  35. Rosales, L.: Generalizing Hopf’s boundary point lemma. Canad. Math. Bull. 62(1), 183–197 (2019)

    Article  MathSciNet  Google Scholar 

  36. Sirakov, B.: Solvability of uniformly elliptic fully nonlinear PDE. Arch. Ration. Mech. Anal. 195(2), 579–607 (2010)

    Article  MathSciNet  Google Scholar 

  37. Souplet, P.: A priori estimates and bifurcation of solutions for an elliptic equation with semidefinite critical growth in the gradient. Nonlinear Anal. 121, 412–423 (2015)

    Article  MathSciNet  Google Scholar 

  38. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  39. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987)

    Book  Google Scholar 

  40. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. I. Springer-Verlag, New York (1986)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank warmly L. Jeanjean for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Fernández.

Additional information

Communicated by M. Del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Hopf’s Lemma and SMP with unbounded lower order terms

Appendix A. Hopf’s Lemma and SMP with unbounded lower order terms

In this section we prove Theorem 2.7 which can be seen as a combination of the Strong maximum principle and the Hopf’s Lemma. As said in Sect. 2, our proof is inspired by [35]. Let us begin with some preliminary results that will be needed to prove Theorem A.6. Throughout the appendix we assume \(N \ge 2\).

Lemma A.1

[28, Lemma 4.2] Let \(\Omega \subset \mathbb {R}^{N}\) be a bounded domain, \(\beta \in (L^N(\Omega ))^N\) and \(\xi \in L^{N/2}(\Omega )\) with \(\xi \ge 0\). Then, for every \(F \in H^{-1}(\Omega )\), there exists a unique solution \(u \in H_0^1(\Omega )\) to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u + \langle \beta (x), \nabla u\rangle + \xi (x)u = F, \quad &{} \text { in } \Omega ,\\ u = 0, \quad &{} \text { on } \partial \Omega . \end{array} \right. \end{aligned}$$

As a consequence of the previous lemma we obtain an existence result with inhomogeneous boundary conditions.

Corollary A.2

Let \(\omega := B_1(0) {\setminus } \overline{B_{1/2}(0)}\), \(\beta \in (L^p(\omega ))^N\) and \(\xi \in L^p(\omega )\) for some \(p > N\) and assume that \(\xi \ge 0\). Then, there exists a unique solution \(u \in \mathcal {C}^{1,\tau }(\overline{\omega })\) for some \(\tau > 0\) to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u + \langle \beta (x), \nabla u\rangle + \xi (x)u = 0, \quad &{} \text { in } \omega ,\\ u = 0, \quad &{} \text { on } \partial B_1(0),\\ u = 1, \quad &{} \text { on } \partial B_{1/2}(0), \end{array} \right. \end{aligned}$$
(A.1)

such that \(0 \le u \le 1\) in \(\overline{\omega }\).

Proof

Let us consider \(\varphi \in C^{\infty }(\mathbb {R}^{N})\) given by \( \varphi (x) = \frac{4}{3}(1-|x|^2),\) and observe that \(\varphi (x) = 0\) for all \( x \in \partial B_1(0)\) and \(\varphi (x) = 1\) for all \(x \in \partial B_{1/2}(0)\). Moreover, by direct computations it follows that

$$\begin{aligned} -\Delta \varphi + \langle \beta (x), \nabla \varphi \rangle + \xi (x) \varphi = \frac{8N}{3} - \frac{8}{3} \langle \beta (x), x \rangle + \frac{4}{3} \xi (x) (1-|x|^2) =: - F \in H^{-1}(\omega ). \end{aligned}$$

By Lemma A.1 we know that there exists a unique solution \(w \in H_0^1(\omega )\) to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta w + \langle \beta (x), \nabla w \rangle + \xi (x)w = F, \quad &{} \text { in } \omega ,\\ w = 0, \quad &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

Then, we define \(u = w + \varphi \) and we observe that \(u \in H^1(\omega )\) is a solution to (A.1). Next, by [28, Proposition 3.10] we deduce that \(0 \le u \le 1\) in \(\overline{\omega }\) and, by [29, Theorem II-15.1] we obtain that \(u \in \mathcal {C}^{1,\tau }(\overline{\omega })\) for some \(\tau > 0\). Finally, the uniqueness follow again from [28, Proposition 3.10]. \(\square \)

Lemma A.3

Let \(\omega := B_1(0) {\setminus } \overline{B_{1/2}(0)}\), \(\varepsilon \in (0,1/4)\), \(x_0 \in \partial B_1(0)\) and \(T: \mathbb {R}^{N}\rightarrow \mathbb {R}^{N}\) given by \(T(x) = \varepsilon ^{-1}( x-x_0) + x_0\). Then, it follows that \(\omega \subset T(\omega ):= \{T(x): x \in \omega \}\).

Proof

First of all, observe that

$$\begin{aligned} T(\omega ) = B_{1/\varepsilon } \left( \big (1-\frac{1}{\varepsilon }\big )x_0 \right) {\setminus } \overline{B_{1/2\varepsilon } \left( \big (1-\frac{1}{\varepsilon }\big )x_0 \right) } = \left\{ x \in \mathbb {R}^{N}: \frac{1}{2\varepsilon }< \big | x - \big ( 1 - \frac{1}{\varepsilon }\big )x_0 \big | < \frac{1}{\varepsilon } \right\} .\nonumber \\ \end{aligned}$$
(A.2)

Now, observe that, for all \(x \in \omega \) and all \(\varepsilon \in (0,1/4)\), it follows that

$$\begin{aligned} \big | x - \big ( 1 - \frac{1}{\varepsilon }\big )x_0 \big | \le |x| + \big | 1 - \frac{1}{\varepsilon }\big |\,|x_0| = |x| + \frac{1}{\varepsilon }-1 < 1 + \frac{1}{\varepsilon } - 1 = \frac{1}{\varepsilon }, \end{aligned}$$
(A.3)

and

$$\begin{aligned} \big | x - \big ( 1 - \frac{1}{\varepsilon }\big )x_0 \big | \ge \left| |x| - \big | 1 - \frac{1}{\varepsilon }\big |\,|x_0| \right| \ge \frac{1}{\varepsilon } - 1 - |x|> \frac{1}{\varepsilon } - 2 > \frac{1}{2\varepsilon }. \end{aligned}$$
(A.4)

Hence, the result follows from (A.2)–(A.4). \(\square \)

Lemma A.4

Let \(\omega := B_1(0) {\setminus } \overline{B_{1/2}(0)}\), \(B = (B^1, \ldots , B^N) \in (L^p(\omega ))^N\) and \(a \in L^p(\omega )\), for some \(p > N\), \(\varepsilon \in [0,1/4]\), \(B_{\varepsilon }(y) = (B_\varepsilon ^1, \ldots , B_{\varepsilon }^N) := \varepsilon B(\varepsilon (y-x_0) + x_0)\) and \(a_{\varepsilon }(y) := \varepsilon ^2 a(\varepsilon (y-x_0) + x_0).\) Then, it follows that

  • \(\Vert B_{\varepsilon }^i \Vert _{L^p(\omega )} \le \varepsilon ^{1 - \frac{N}{p}} \Vert B^i\Vert _{L^p(\omega )},\qquad \forall \ i = 1, \ldots , N\);

  • \(\Vert a_{\varepsilon }\Vert _{L^p(\omega )} \le \varepsilon ^{2 - \frac{N}{p}} \Vert a\Vert _{L^p(\omega )}\).

Proof

Let \(i \in \{1, \ldots , N\}\). We directly observe that

$$\begin{aligned} \Vert B_{\varepsilon }^{i}\Vert _{L^p(\omega )}^p = \int _{\omega } |B_{\varepsilon }^i(y)|^p dy = \varepsilon ^p \int _{\omega } |B^{i}(\varepsilon (y-x_0)+x_0)|^p dy = \varepsilon ^{p-N} \int _{S(\omega )} |B^i(z)|^p dz,\nonumber \\ \end{aligned}$$
(A.5)

where \(z = S(y) = \varepsilon (y-x_0) + x_0\). Then, arguing as in Lemma A.3, we obtain that \(S(\omega ) \subset \omega \), and so, taking into account (A.5), we deduce that

$$\begin{aligned} \Vert B_{\varepsilon }^{i}\Vert _{L^p(\omega )}^p \le \varepsilon ^{p-N} \int _{\omega } |B^{i}(z)|^p dz = \varepsilon ^{p-N} \Vert B^{i}\Vert _{L^p(\omega )}^p . \end{aligned}$$

The estimate for \(a_{\varepsilon }\) follows arguing on the same way. \(\square \)

Using the rescaled functions \(B_{\varepsilon }\) and \(a_{\varepsilon }\) defined in Lemma A.4, we introduce the auxiliary boundary value problem

figure i

and we prove the following uniform a priori bound that will be crucial in the proof of Theorem A.6.

Lemma A.5

Let \(\omega := B_1(0) {\setminus } \overline{B_{1/2}(0)}\), \(B = (B_1, \ldots , B_N) \in (L^p(\omega ))^N\) and \(a \in L^p(\omega )\) for some \(p > N\). Then, there exists \(M > 0\) such that, for all \(\varepsilon \in [0,1/4]\), any solution u to (\(P_{\varepsilon }\)) satisfies \(\Vert u\Vert _{\mathcal {C}^1(\overline{\omega })} \le M\).

Proof

We argue by contradiction. Assume the existence of sequences \(\{\varepsilon _n\} \subset [0,1/4]\) and \(\{u_n\}\) solutions to (\(P_{\varepsilon }\)) with \(\varepsilon = \varepsilon _n\) such that

$$\begin{aligned} \Vert u_n\Vert _{\mathcal {C}^1(\overline{\omega })} \rightarrow + \infty , \quad \text { as } n \rightarrow \infty . \end{aligned}$$

Without loss of generality (up to a subsequence if necessary) we may assume that

$$\begin{aligned} 1 \le \Vert u_n\Vert _{\mathcal {C}^1(\overline{\omega })}, \quad \forall \ n \in \mathbb {N}. \end{aligned}$$

We consider then \(v_n:= \frac{u_n}{\Vert u_n\Vert _{\mathcal {C}^1(\overline{\omega })}}\) and observe that \(v_n\) solves

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta v_n + \langle B_{\varepsilon _n}(x), \nabla v_n \rangle + a_{\varepsilon _n}(x)v_n = 0, \quad &{} \text { in } \omega , \\ v_n = 0, \quad &{} \text { on } \partial B_1(0),\\ v_n = \frac{1}{\Vert v_n\Vert _{ \mathcal {C}^1(\overline{\omega }) }}, \quad &{} \text { on } \partial B_{1/2}(0). \end{array} \right. \end{aligned}$$

Now, for all \(n \in \mathbb {N}\), let us define

$$\begin{aligned} \xi _n = \frac{4}{3\Vert u_n\Vert _{ \mathcal {C}^1(\overline{\omega }) }} (1-|x|^2) \in \mathcal {C}^{\infty }(\mathbb {R}^{N}) \quad \text { and } \quad w_n = v_n - \xi _n, \end{aligned}$$

and observe that \(w_n\) solves

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta w_n = - \langle B_{\varepsilon _n}(x), \nabla v_n \rangle - a_{\varepsilon _n} (x) v_n - \frac{8N}{3\Vert u_n\Vert _{\mathcal {C}^1(\overline{\omega })}}, \quad &{} \text { in } \omega , \\ w_n = 0, &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

Then, by [19, Lemma 9.17], there exists \(C (\omega , N) > 0\) such that

$$\begin{aligned} \Vert w_n\Vert _{W^{2,p}(\omega )} \le C\, \left\| \langle B_{\varepsilon _n}(x), \nabla v_n \rangle + a_{\varepsilon _n} (x) v_n + \frac{8N}{3\Vert u_n\Vert _{\mathcal {C}^1(\overline{\omega })}} \right\| _{L^p(\omega )}, \end{aligned}$$

and so, since \(\Vert v_n\Vert _{\mathcal {C}^1(\overline{\omega })} = 1\) for all \(n \in \mathbb {N}\), by Lemma A.4, there exists \(C_1 = C_1 (\omega , N, \Vert B\Vert _{(L^p(\omega ))^N},\)\( \Vert a\Vert _{L^p(\omega )}) > 0\) such that

$$\begin{aligned} \Vert w_n\Vert _{W^{2,p}(\omega )} \le C_1.\end{aligned}$$

From the definition of \(w_n\), we deduce the existence of \(C_2 > 0\) (independent of n) such that

$$\begin{aligned} \Vert v_n\Vert _{W^{2,p}(\omega )} \le C_2.\end{aligned}$$

Since \(p > N\), by the Sobolev compact embedding, we have that, up to a subsequence \(v_n \rightarrow v\) in \(\mathcal {C}^1(\overline{\omega })\) for some \(v \in \mathcal {C}^1(\overline{\omega })\). Moreover, by Lemma A.4, we have \({\overline{a}} \in L^p(\omega )\) (resp. \({\overline{B}} \in (L^p(\omega ))^N\)) with \({\overline{a}}\ge 0\) such that \(a_{\varepsilon _n} \rightharpoonup {\overline{a}}\) weakly in \(L^p(\omega )\) (resp. \(B_{\varepsilon _n} \rightharpoonup {\overline{B}}\) weakly in \((L^p(\omega ))^N\)). This implies that v is a weak solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta v + \langle {\overline{B}}(x), \nabla v \rangle + {\overline{a}}(x) v = 0, \quad &{} \text { in } \omega ,\\ v = 0, &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

By [28, Proposition 3.10], we deduce that \(v \equiv 0\). This contradicts the fact that \(v_n \rightarrow v\) in \(\mathcal {C}^1(\overline{\omega })\) and the result follows. \(\square \)

Having at hand all the needed ingredients, we prove the Hopf’s Lemma with unbounded lower order terms.

Theorem A.6

(Hopf’s Lemma) For \(z \in \mathbb {R}^{N}\) and \(R > 0\), let \(B \in (L^p(B_R(z))^N\) and \(a \in L^p(B_R(z))\) for some \(p > N\) such that \(a \ge 0\). Let \(x_0 \in \partial B_R(z)\) and let \(u \in \mathcal {C}^{1}(\overline{B_R(z)})\) be an upper solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u + \langle B(x), \nabla u\rangle + a(x)u = 0, \quad &{} \text { in } B_R(z),\\ u = 0, \quad &{} \text { on } \partial B_R(z), \end{array} \right. \end{aligned}$$

such that \(u(x) > u(x_0) = 0\) for all \(x \in B_R(z)\). Then \(\frac{\partial u}{\partial \nu }(x_0) < 0\), where \(\nu \) denotes the exterior unit normal.

Proof

As it is well known, by the change of variable \(y = T(x) = \frac{1}{R}(x-z)\), there is no loss of generality to consider the problem on \(B_1(0)\) i.e. to assume that \(x_0 \in \partial B_1(0)\) and that \(u \in \mathcal {C}^{1}(\overline{B_1(0)})\) is an upper solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u + \langle B(x), \nabla u\rangle + a(x)u = 0, \quad &{} \text { in } B_1(0),\\ u = 0, \quad &{} \text { on } \partial B_1(0). \end{array} \right. \end{aligned}$$
(A.6)

Let us fix \(\omega := B_1(0) {\setminus } \overline{B_{1/2}(0)}\) and split the proof into several steps:

Step 1 Auxiliary regular barrier \(\varphi \)

Let us consider the problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta \varphi = 0, \quad &{} \text { in } \omega ,\\ \varphi = 0, \quad &{} \text { on } \partial B_1(0),\\ \varphi = 1, \quad &{} \text { on } \partial B_{1/2}(0). \end{array} \right. \end{aligned}$$
(A.7)

By [19, Theorem 6.14] we know that there exists \(\varphi \in \mathcal {C}^{2,\tau }(\overline{\omega })\) for some \(\tau > 0\) solution to (A.7). Moreover, by [19, Lemma 3.4 and Theorem 3.5], we know that

$$\begin{aligned} 0< \varphi (x)< 1, \quad \forall \ x \in \omega , \quad \text { and } \quad \frac{\partial \varphi }{\partial \nu } (x_0) < 0. \end{aligned}$$
(A.8)

Step 2Let\(M > 0\)given by LemmaA.5. For every\(\varepsilon \in (0,1/4)\)there exists\(\varphi _{\varepsilon } \in \mathcal {C}^{1,\tau }(\overline{\omega })\)for some\(\tau > 0\)solution to (\(P_{\varepsilon }\)) such that\(\Vert \varphi _{\varepsilon }\Vert _{\mathcal {C}^1(\overline{\omega })} \le M.\)

The existence follows from Corollary A.2 and the uniform bound from Lemma A.5.

Step 3Let\(\varphi _{\varepsilon }\)the solution to (\(P_{\varepsilon }\)) given by Step 2. There exists\(\overline{\varepsilon } \in (0,1/4)\)such that, for all\(\varepsilon \in (0, \overline{\varepsilon })\), it follows that\(\frac{\partial \varphi _{\varepsilon }}{\partial \nu } (x_0) < 0\).

Let us define \(\psi _{\varepsilon } := \varphi _{\varepsilon } - \varphi \) and observe that \(\psi _{\varepsilon } \in \mathcal {C}^{1,\tau }(\overline{\omega })\) for some \(\tau > 0\) solves

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta \psi _{\varepsilon } = - \langle B_{\varepsilon }(x), \nabla \varphi _{\varepsilon } \rangle - a_{\varepsilon }(x) \varphi _{\varepsilon }, \quad &{} \text { in } \omega ,\\ \psi _{\varepsilon } = 0, &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

Then, by [19, Lemma 9.17] and Lemma A.4, there exists \(C = C(\omega , N)> 0\) such that

$$\begin{aligned} \begin{aligned} \Vert \psi _{\varepsilon }\Vert _{W^{2,p}(\omega )}&\le C \left\| \langle B_{\varepsilon }(x), \nabla \varphi _{\varepsilon } \rangle + a_{\varepsilon }(x) \varphi _{\varepsilon } \right\| _{L^p(\omega )} \\&\le C \Vert \varphi _{\varepsilon }\Vert _{\mathcal {C}^{1}(\overline{\omega })} \varepsilon ^{1-\frac{N}{p}} \left( \sum _{i=1}^N \Vert B^{i}\Vert _{L^p(\omega )} + \varepsilon \Vert a\Vert _{L^p(\omega )} \right) \\&\le \varepsilon ^{1-\frac{N}{p}} C M \left( \sum _{i=1}^N \Vert B^{i}\Vert _{L^p(\omega )} + \Vert a\Vert _{L^p(\omega )} \right) =: \varepsilon ^{1-\frac{N}{p}} C_2 \end{aligned} \end{aligned}$$

for some \(C_2\) independent of \(\varepsilon \). Hence, by the Sobolev embedding, there exists \(C_3 > 0\) independent of \(\varepsilon \) such that

$$\begin{aligned} \Vert \psi _{\varepsilon }\Vert _{\mathcal {C}^{1,\tau }(\overline{\omega })} \le \varepsilon ^{1-\frac{N}{p}} C_3. \end{aligned}$$

We conclude that

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} \left| \frac{\partial \varphi _{\varepsilon }}{\partial \nu }(x_0) - \frac{\partial \varphi }{\partial \nu }(x_0) \right| \le \lim _{\varepsilon \rightarrow 0} \Vert \psi _{\varepsilon }\Vert _{\mathcal {C}^{1,\tau }(\overline{\omega })} = 0, \end{aligned}$$

and the Step 3 follows by (A.8).

Step 4 Conclusion

Let \(u \in \mathcal {C}^1(\overline{B_1(0))}\) be an upper solution to (A.6) such that \(u(x) > u(x_0) = 0\) for all \(x \in B_1(0)\). We fix \(\varepsilon > 0\) small enough to ensure that the Step 3 holds and define

$$\begin{aligned} u_{\varepsilon }(y) = u( \varepsilon (y-x_0) + x_0). \end{aligned}$$

Since we know that \(\omega \subset T(\omega )\) by Lemma A.3, we have that \(u_{\varepsilon }\) is an upper solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u_{\varepsilon } + \langle B_{\varepsilon }(x), \nabla u_{\varepsilon } \rangle + a_{\varepsilon }(x) u_{\varepsilon } = 0, \quad &{} \text { in } \omega , \\ u_{\varepsilon } = 0, &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

Then, we define \({\overline{u}}_{\varepsilon } = u_{\varepsilon } - \theta _{\varepsilon } \varphi _{\varepsilon }\) with

$$\begin{aligned} \theta _{\varepsilon } = \inf _{\partial B_{1/2}(0)} u_{\varepsilon } > 0, \end{aligned}$$

and we have that \({\overline{u}}_{\varepsilon }\) is an upper solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta {\overline{u}}_{\varepsilon } + \langle B_{\varepsilon }(x), \nabla {\overline{u}}_{\varepsilon } \rangle + a_{\varepsilon }(x) {\overline{u}}_{\varepsilon } = 0, \quad &{} \text { in } \omega , \\ {\overline{u}}_{\varepsilon } = 0, &{} \text { on } \partial \omega . \end{array} \right. \end{aligned}$$

Applying then [28, Proposition 3.10] we deduce that \(u_{\varepsilon } - \theta _{\varepsilon } \varphi _{\varepsilon } \ge 0,\) in \(\overline{\omega },\) and so, by Step 3, we conclude that

$$\begin{aligned} \frac{\partial u }{\partial \nu }(x_0) = \frac{1}{\varepsilon } \frac{\partial u_{\varepsilon }}{\partial \nu } (x_0) \le \frac{\theta _{ \varepsilon }}{\varepsilon } \frac{\partial \varphi _{\varepsilon }}{\partial \nu }(x_0) < 0, \end{aligned}$$

as desired. \(\square \)

Proof of Theorem 2.7

The result follows from Theorem A.6 arguing as in [39, Theorem 3.27]. See also [19, Theorem 3.5]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Coster, C., Fernández, A.J. Existence and multiplicity for an elliptic problem with critical growth in the gradient and sign-changing coefficients. Calc. Var. 59, 97 (2020). https://doi.org/10.1007/s00526-020-01755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01755-z

Keywords

Mathematics Subject Classification

Navigation