Skip to main content

Advertisement

Log in

Combing for beach broccoli: surveys of the endemic macrolichen Cladonia submitis determines endangered status under IUCN guidelines

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The global decline in biodiversity has invigorated the field of conservation biology, leading to investigation of species at risk of extinction in hopes of generating effective conservation strategies. Some highly diverse taxa, such as lichens, have received considerably less conservation attention, compared to plants and vertebrates. Here we add present the results of a comprehensive demographic survey and IUCN risk assessment of Cladonia submitis, a conspicuous macrolichen endemic to the Mid-Atlantic coast of eastern North America, across the core of its range. While it was found at several new locations, we found the species had disappeared from many locations where it once occurred. This decline, in conjunction with its restricted range, supports a status of Endangered under IUCN guidelines. While fire and sea level rise likely pose threats to the species, the most immediate threat is urbanization and alteration of coastal dunes. This evaluation does not consider collections from Japan and Sakhalin Island which have been assigned as C. submitis, due to differences in range, habitat and morphology that suggest this identification is inaccurate. In the absence of a proper taxonomic assessment or phylogenetic study to answer this question of identity, Japanese specimens could not be considered in this assessment. Altogether, this study provides a basis for effective management strategies of this charismatic species whose core range consists of the densely populated region between the American cities of Boston and Washington, D.C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahti T (1961) Taxonomic studies on reindeer lichens (Cladonia, subgenus Cladina). Ann Bot Soc Zool Bot Fenn 'Vanamo' 32(1):1–160

    Google Scholar 

  • Allen JL, Lendemer JC (2015) Fungal conservation in the USA. Endanger Species Res 28(1):33–42

    Article  Google Scholar 

  • Allen JL, Lendemer JC (2016) Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodivers Conserv 25(3):555–568

    Article  Google Scholar 

  • Allen JL, McKenzie SK, Sleith RS, Alter SE (2018) First genome-wide analysis of an endangered lichen reveals isolation by distance and strong population structure. Am J Bot 105(9):1556–1567

    Article  CAS  PubMed  Google Scholar 

  • Allen JL, McMullin RT, Tripp EA, Lendemer JC (2019) Lichen conservation in North America: a review of current practices and research in Canada and the United States. Biodivers Conserv 28(12):3103–3138

    Article  Google Scholar 

  • Alors D, Dal Grande F, Schmitt I, Kraichak E, Lumbsch HT, Crespo A, Divakar PK (2014) Characterization of fungus-specific microsatellite markers in the lichen-forming fungus Parmelina carporrhizans (Parmeliaceae). Appl Plant Sci 2(12):1400081

    Article  Google Scholar 

  • Anderson DC, Harper KT, Holmgren RC (1982) Factors influencing development of cryptogamic soil crusts in Utah deserts. Rangeland Ecol Manag 35(2):180–185

    Article  Google Scholar 

  • Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, MacGregor-Fors I, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B 281(1780):20133330

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the earth’s sixth mass extinction already arrived? Nature 471(7336):51

    Article  CAS  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bench G, Clark BM, Mangelson NF, Clair LS, Rees LB, Grant PG, Southon JR (2001) Accurate lifespan estimates cannot be obtained from 14 C profiles in the crustose lichen Rhizocarpon geographicum (L.) DC. Lichenologist 33(6):539–542

    Article  Google Scholar 

  • Binder MD, Ellis CJ (2008) Conservation of the rare British lichen Vulpicida pinastri: changing climate, habitat loss and strategies for mitigation. Lichenologist 40(1):63–79

    Article  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  • Brodo IM, Sharnoff SD, Sharnoff S. (2001). Lichens of North America, Yale University Press.

  • Buckland ST, Borchers DL, Johnston A, Henrys PA, Marques TA (2007) Line transect methods for plant surveys. Biometrics 63(4):989–998

    Article  CAS  PubMed  Google Scholar 

  • Cameron R, Goudie I, Richardson D (2013) Habitat loss exceeds habitat regeneration for an IUCN flagship lichen epiphyte: Erioderma pedicellatum. Can J Forest Res 43(11):1075–1080

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends in Ecol Evol 20(3):110

    Article  Google Scholar 

  • Clément B, Touffet J (1990) Plant strategies and secondary succession on Brittany heathlands after severe fire. J Veg Sci 1(2):195–202

    Article  Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114(3):471–492

    Article  CAS  PubMed  Google Scholar 

  • Coxson DS, Marsh J (2001) Lichen chronosequences (post-fire and post-harvest) in lodgepole pine (Pinus contorta) forests of northern-interior British Columbia. Can J Bot 79:1449–1464

    Google Scholar 

  • Crittenden PD (1991) Ecological significance of necromass production in mat-forming lichens. Lichenologist 23(3):323–331

    Article  Google Scholar 

  • Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F, Fonseca PL, Vas ABM, Oliveira G, Góes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genet Biol. https://doi.org/10.4172/2165-8056.1000110

    Article  Google Scholar 

  • Culberson CF, Kristinsson HD (1970) A standardized method for the identification of lichen products. J Chromatogr A 46:85–93

    Article  CAS  Google Scholar 

  • Dal Grande F, Sharma R, Meiser A, Rolshausen G, Büdel B, Mishra B, Thines M, Otte J, Pfenniger M, Schmitt I (2017) Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol Biol 17(1):93

    Article  CAS  Google Scholar 

  • Degtjarenko P, Tõrra T, Mandel T, Marmor L, Saag A, Scheidegger C, Randlane T (2018) Unconstrained gene flow between populations of a widespread epiphytic lichen Usnea subfloridana (Parmeliaceae, Ascomycota) in Estonia. Fungal Biol. https://doi.org/10.1016/j.funbio.2018.03.013

    Article  PubMed  Google Scholar 

  • Delendick TJ (1994) Notes on the lichens of eastern New York City: kings and queens counties, Long Island. New York Bull Torrey Bot Club 121(2):188–193

    Article  Google Scholar 

  • DePriest PT (1994) Variation in the Cladonia chlorophaea complex. II: ribosomal DNA variation in a southern Appalachian population. Bryologist 97(2):117–126

    Article  CAS  Google Scholar 

  • Dighton J (1995) Nutrient cycling in different terrestrial ecosystems in relation to fungi. Can J Bot 73(S1):1349–1360

    Article  Google Scholar 

  • Dirig R (1994) Lichens of pine barrens, pine plains, and "Ice Cave" habitats in the Shawangunk Mountains New York. Mycotaxon 52(2):523–558

    Google Scholar 

  • Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc R Soc Lond 276(1670):3037–3045

    Article  Google Scholar 

  • Ehrenfeld JG (1983) The effects of changes in land-use on swamps of the New Jersey Pine Barrens. Biol Conserv 25(4):353–375

    Article  Google Scholar 

  • Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53(4):457–466

    Article  Google Scholar 

  • Elmqvist T, Zipperer W, Güneralp B (2016) Urbanization, habitat loss, biodiversity decline: solution pathways to break the cycle. In: Seta K, Solecki WD, Griffith CA (eds) Routledge Handbook of Urbanization and Global Environmental Change. Routledge, London and New York, pp 139–151

    Google Scholar 

  • Evans AW (1943) Microchemical studies on the genus Cladonia, subgenus Cladina. Rhodora 45(539):417–438

    CAS  Google Scholar 

  • Farrier D, Whelan R, Mooney C (2007) Threatened species listing as a trigger for conservation action. Environ Sci Policy 10(3):219–229

    Article  Google Scholar 

  • Forest F, Crandall KA, Chase MW, Faith DP (2015) Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2014.0002

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser RH, Lantz TC, Olthof I, Kokelj SV, Sims RA (2014) Warming-induced shrub expansion and lichen decline in the Western Canadian Arctic. Ecosystems 17(7):1151–1168

    Article  Google Scholar 

  • Game ET, Kareiva P, Possingham HP (2013) Six common mistakes in conservation priority setting. Conserv Biol 27:480–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146(2):317–323

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, Menges ES (1996) The relationship between open space and fire for species in a xeric Florida shrubland. Bull Torrey Bot Club 123(2):81–92

    Article  Google Scholar 

  • Hawksworth DL, Lücking R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr, 5(4): FUNK-0052–2016.

  • Hinds JW, Hinds PL. (2007). The macrolichens of New England. The New York Botanical Garden Press.

  • Hobbs RJ (1985) The persistence of Cladonia patches in closed heathland stands. Lichenologist 17(1):103–109

    Article  Google Scholar 

  • International Union for the Conservation of Nature (IUCN). (2018). IUCN Redlist Categories and Criteria: version 3.1. Retrieved September 2018 from https://www.iucnredlist.org/resources/categories-and-criteria.

  • International Union for the Conservation of Nature (IUCN). (2019). IUCN Redlist Summary Statistics. Retrieved September 2019 from https://www.iucnredlist.org/resources/summary-statistics.

  • Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 72(3):255–268

    Article  CAS  Google Scholar 

  • Joly K, Jandt RR, Klein DR (2009) Decrease of lichens in arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north-western Alaska. Polar Res 28(3):433–442

    Article  Google Scholar 

  • Jordan J (2003) Cape May Point: The illustrated history: 1875 to the present. Schiffer Books, Atglen, PA

    Google Scholar 

  • Keeley J, Syphard A (2016) Climate change and future fire regimes: examples from California. Geosciences 6(3):37

    Article  CAS  Google Scholar 

  • Kettlewell HBD (1955) Selection experiments on industrial melanism in the Lepidoptera. Heredity 9(3):323–342

    Article  Google Scholar 

  • Knisley CB, Hill JM (1992) Effects of habitat change from ecological succession and human impact on tiger beetles. VA J Sci 43(1):133–142

    Google Scholar 

  • Kurokawa S (2006) Phytogeographical elements of the lichen flora of Japan. J Hattori Bot Lab 100:721–738

    Google Scholar 

  • LaGreca S, Spencer Goyette S, Medeiros ID (2018) The lichens of lizard lick. North Carolina Evansia 35(2):53–57

    Google Scholar 

  • Lawrey JD (1977) Inhibition of moss spore germination by acetone extracts of terricolous Cladonia species. Bull Torrey Bot Club 104(1):49–52

    Article  Google Scholar 

  • Lechowicz MJ, Adams MS (1974) Ecology of Cladonia lichens. I. Preliminary assessment of the ecology of terricolous lichen–moss communities in Ontario and Wisconsin. Can J Bot 52(1):55–64

    Article  Google Scholar 

  • Lendemer JC (2011a) A review of the morphologically similar species Fuscidea pusilla and Ropalospora viridis in eastern North America. Opusc Philolichenum 9:11–20

    Google Scholar 

  • Lendemer JC (2011b) Contributions to the lichen flora of Pennsylvania—Rare and important lichen habitats and lichen communities: part 1, the northeastern counties. Bartonia 65:20–28

    Google Scholar 

  • Lendemer JC, Allen JL (2014) Lichen biodiversity under threat from sea-level rise in the Atlantic Coastal Plain. Bioscience 64(10):923–931

    Article  Google Scholar 

  • Lendemer JC, Allen JL, McMullin RT. (2015). Cladonia submitis Global Red List Assessment Proposal. Retrieved Jan 15 2017 from https://iucn.ekoo.se/iucn/species_view/365718/.

  • Lohmus P, Lohmus A (2009) The importance of representative inventories for lichen conservation assessments: the case of Cladonia norvegica and C. parasitica. Lichenologist 41(1):61–67

    Article  Google Scholar 

  • Lotze HK, Coll M, Magera AM, Ward-Paige C, Airoldi L (2011) Recovery of marine animal populations and ecosystems. Trends Ecol Evol 26(11):595–605

    Article  PubMed  Google Scholar 

  • Lücking R, Hodkinson BP, Leavitt SD (2017) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota—Approaching one thousand genera. Bryologist 119:361–416

    Article  Google Scholar 

  • Maikawa E, Kershaw KA (1976) Studies on lichen-dominated systems. XIX. The postfire recovery sequence of black spruce–lichen woodland in the Abitau Lake Region, NWT. Can J Bot 54(23):2679–2687

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11(2):161–176

    Article  Google Scholar 

  • McGonigle TP (2007) 12 Effects of Animals Grazing on Fungi. In: Kubicek CP (ed) Environmental and Microbial Relationships. Springer, Berlin, Heidelberg, pp 201–212

    Google Scholar 

  • Menges ES, Kohfeldt N (1995) Life history strategies of Florida scrub plants in relation to fire. Bull Torrey Bot Club 122(4):282–297

    Article  Google Scholar 

  • Miyawaki H (1994) Lecanora imshaugii, a lichen of eastern North America and eastern Asia. Bryologist 97(4):409–411

    Article  Google Scholar 

  • Morneau C, Payette S (1989) Postfire lichen–spruce woodland recovery at the limit of the boreal forest in northern Quebec. Can J Bot 67(9):2770–2782

    Article  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Ahti T (2003) Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Mol Phylogenet Evol 27(1):58–69

    Article  CAS  PubMed  Google Scholar 

  • Nash TH (1976) Lichens as indicators of air pollution. Naturwissenschaften 63(8):364–367

    Article  CAS  PubMed  Google Scholar 

  • Nash TH, Gries C (1991) Lichens as indicators of air pollution. In: Gries C, Lipfert FW, Lippmann M, Nash TH (eds) Air Pollution. Springer, Berlin, Heidelberg, pp 1–29

    Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with Lichens—Monitoring Lichens. Springer, Dordrecht

    Book  Google Scholar 

  • Osyczka P, Rola K (2013) Phenotypic plasticity of primary thallus in selected Cladonia species (lichenized Ascomycota: Cladoniaceae). Biologia 68(3):365–372

    Article  CAS  Google Scholar 

  • Osyczka P, Rola K, Lenart-Boroń A, Boroń P (2014) High intraspecific genetic and morphological variation in the pioneer lichen Cladonia rei colonising slag dumps. Open Life Sci 9(5):579–591

    Article  Google Scholar 

  • Pearson L, Skye E (1965) Air pollution affects pattern of photosynthesis in Parmelia sulcata, a corticolous lichen. Science 148(3677):1600–1602

    Article  CAS  PubMed  Google Scholar 

  • Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81(2):247–257

    Article  CAS  Google Scholar 

  • Poelt J (1994) Different species types in lichenized ascomycetes. In: Hawkesworth DL (ed) Ascomycete systematics: Problems and perspectives in the nineties. Plenum, New York, pp 273–278

    Chapter  Google Scholar 

  • Ravera S, Isocrono D, Nascimbene J, Giordani P, Benesperi R, Tretiach M, Montagnani C (2016) Assessment of the conservation status of the mat-forming lichens Cladonia subgenus Cladina in Italy. Plant Biosyst 150(5):1010–1022

    Article  Google Scholar 

  • Ray DG, Cahalan G, Lendemer JC (2020) Factors influencing the persistence of reindeer lichens (Cladonia subgenus Cladina) within frequent-fire environments of the Mid-Atlantic Coastal Plain, USA. Fire Ecol. https://doi.org/10.1186/s42408-019-0063-7

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157(3):475–492

    Article  PubMed  Google Scholar 

  • Reisch C, Schmid C, Hartig F (2018) A comparison of methods for estimating plant population size. Biodivers Conserv 27(8):2021–2028

    Article  Google Scholar 

  • Rios NE, Bart HL. (2010). GEOLocate (Version 3.22) [computer software]. Belle Chasse, LA: Tulane University Museum of Natural History.

  • Rodrigues AS, Pilgrim JD, Lamoreux JF, Hoffmann M, Brooks TM (2006) The value of the IUCN red list for conservation. Trends Ecol Evol 21(2):71–76

    Article  PubMed  Google Scholar 

  • Scheffers BR, Paszkowski CA (2012) The effects of urbanization on North American amphibian species: identifying new directions for urban conservation. Urban Ecosyst 15(1):133–147

    Article  Google Scholar 

  • Scheidegger C, Bilovitz PO, Werth S, Widmer I, Mayrhofer H (2012) Hitchhiking with forests: population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in Southeastern Europe. Ecol Evol 2:2223–2240

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100(3):447–458

    Article  Google Scholar 

  • Smith DR, Brockmann HJ, Beekey MA, King TL, Millard MJ, Zaldívar-Rae J (2017) Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment. Rev Fish Biol Fisher 27(1):135–175

    Article  Google Scholar 

  • Sweet WV, Kopp RE, Weaver CP, Obeysekera J, Horton RM, Thieler ER, Zervas C (2017) Global and regional sea level rise scenarios for the United States. National Oceanic and Atmospheric Administration, United States Department of Commerce

    Google Scholar 

  • Terry EL, McLellan BN, Watts GS (2000) Winter habitat ecology of mountain caribou in relation to forest management. J Appl Ecol 37(4):589–602

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Sigueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Paterson A, Philips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145

    Article  CAS  PubMed  Google Scholar 

  • Thomson JW. (1984). American Arctic Lichens: The Microlichens, University of Wisconsin Press, (Vol. 2).

  • Van der Veken S, Verheyen K, Hermy M (2004) Plant species loss in an urban area (Turnhout, Belgium) from 1880 to 1999 and its environmental determinants. Flora 199(6):516–523

    Article  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci 105:11466–11473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SY, Yarnal B, Fisher A (2002) Vulnerability of coastal communities to sea-level rise: a case study of Cape May County, New Jersey, USA. Climate Res 22(3):255–270

    Article  Google Scholar 

  • Wyatt R, Stoneburner A (1982) Range extensions for some cryptogams from granite outcrops in Alabama. Bryologist 85:405–409

    Article  Google Scholar 

Download references

Acknowledgements

A great thanks is extended to the Rutgers Pinelands Field Station for providing housing and the use of their facility over the course of this study. Additionally, thank you to Boy Scout troop 48 of Egg Harbor Township and to Tom Walker for your assistance in the field. Dr. Jessica Allen was invaluable resources in structuring, preparing and executing this study. Mike Baxter was instrumental in gathering high-quality scanning electron microscopy of specimens examined. Keith Seager, Rick Radis and David Snyder were all critical in understanding what happened to the lichens on Cape May dunes. This manuscript is part of a dissertation by the first author and was supported by NSF Dimensions of Biodiversity award #1542629 and #154263, as well as the student research grant by the Philadelphia Botanical Club and the Culberson and Hale award by the American Bryological and Lichenological Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan R. Hoffman.

Additional information

Communicated by Pradeep Kumar Divakar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, J.R., Ohmura, Y. & Lendemer, J.C. Combing for beach broccoli: surveys of the endemic macrolichen Cladonia submitis determines endangered status under IUCN guidelines. Biodivers Conserv 29, 2439–2456 (2020). https://doi.org/10.1007/s10531-020-01983-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-01983-x

Keywords

Navigation