Skip to main content
Log in

Rational Design of Bioactive and Antibacterial Efficient Nano-ZnO Loaded Chitosan Dressing for Improved Wound Healing after Femoral Fracture Surgery and Nursing Care Management

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present work deals with the preparation of bio-nanocomposite for enhanced antibacterial activity and its application on surgical care. Chitosan-ZnO nanocomposite was prepared by direct addition of dissolved chitosan with zinc nitrate and sodium hydroxide solution. The formation of chitosan-ZnO nanocomposite was confirmed by Fourier-transform infrared spectroscopy and UV–Visible spectroscopic analyses. Hexagonal structure of ZnO was determined by X-ray diffraction patterns. With two-fold increase of zinc nitrate concentration, higher zinc ion content in the nanocomposite was obtained and evidenced by atomic absorption spectroscopy studies. The thermal analysis revealed the stability of chitosan increased with formation of chitosan-ZnO nanocomposite. The scanning electron microscope images revealed that ZnO nanoparticles were dispersed within the chitosan matrix. The prepared nanocomposite had a higher antibacterial activity than pure chitosan which showed excellent activity against Escherichia coli (E. coli) with highest zone of inhibition 90 mm. The prepared nanocomposite formulations exhibited excellent in vitro cytocompatibility and in vivo histological activity, which demonstrates the favourable wound healing behaviour of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Fang, V. Chan, H. Q. Mao, and K. W. Leong (2001). Biomacromolecules 2, 1161.

    Article  CAS  Google Scholar 

  2. K. N. Hong, N. Y. Park, S. H. Lee, and S. P. Meyers (2002). Int. J. Food. Microbiol. 74, 65.

    Article  Google Scholar 

  3. G. J. Tsai, S. L. Zhang, and P. L. Shieh (2004). J. Food Protect. 67, 396.

    Article  CAS  Google Scholar 

  4. N. Liu, X. G. Chen, H. J. Park, C. G. Liu, C. S. Liu, X. H. Meng, and L. J. Yu (2006). Carbohydr. Polym. 64, 60.

    Article  CAS  Google Scholar 

  5. Z. Jia, D. Shen, and W. Xu (2001). Carbohyr. Res. 333, 1.

    Article  CAS  Google Scholar 

  6. T. C. Yang, C. C. Chou, and C. F. Li (2005). Int. J. Food Microbiol. 97, 237.

    Article  CAS  Google Scholar 

  7. H. Liu, Y. M. Du, J. H. Yang, and H. Y. Zhu (2004). Carbohydr. Polym. 55, 291.

    Article  CAS  Google Scholar 

  8. E. Guibal (2004). Sep. Purific. Technol. 38, 43.

    Article  CAS  Google Scholar 

  9. S. P. Chen, G. Z. Wu, and H. Y. Zeng (2005). Carbohydr. Polym. 60, 33.

    Article  CAS  Google Scholar 

  10. Y. Yi, Y. T. Wang, and H. Liu (2003). Carbohydr. Polym. 53, 425–430.

    Article  CAS  Google Scholar 

  11. M. D. Ana and L. D. Angel (2015). Biomacromolecules 16, 2631.

    Article  Google Scholar 

  12. L. D. Wen, S. N. Shan, L. X. Ying, R. X. Zi, and L. F. Cheng (2009). Carbohydr. Polym. 75, 385.

    Article  Google Scholar 

  13. L.-H. Li, J.-C. Deng, H.-R. Deng, Z.-L. Liu, and L. Xin (2010). Carbohydr. Res. 345, 994.

    Article  CAS  Google Scholar 

  14. C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, and S. Li (2006). Mater. Lett. 60, 1828.

    Article  CAS  Google Scholar 

  15. A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran (2006). Bull. Mater. Sci. 29, 641.

    Article  CAS  Google Scholar 

  16. R. S. Yadav, P. Mishra, and A. C. Pandey (2008). Ultrasonics. Sonochem. 15, 863.

    Article  CAS  Google Scholar 

  17. A. M. A. Nada, M. Y. Alkady, and H. M. Fekry (2007). Bioresources 3, 46.

    Google Scholar 

  18. N. M. Aghatabay, Y. Mahmiani, H. Cevik, and B. Dulger (2009). Eur. J. Med. Chem. 44, 365.

    Article  CAS  Google Scholar 

  19. A. M. El-Shafei, M. M. G. Fouda, D. Knittel, and E. Schollmeyer (2008). J Appl Polym Sci. 110, 1289.

    Article  CAS  Google Scholar 

  20. N. Bhattarai, H. R. Ramay, S. H. Chou, and M. Zhang (2006). Int. J. Nanomed. 1, 181.

    Article  CAS  Google Scholar 

  21. L.-G. Tang and N.-S. Hon David (2001). J. Appl. Polym. Sci. 79, 1476.

    Article  CAS  Google Scholar 

  22. M. Haase, H. Weller, and A. Henglein (1988). a. J. Phys. Chem. 92, 482.

    Article  CAS  Google Scholar 

  23. R. J. Kubo (1962). J. Phys. Soc. Jpn. 17, 975.

    Article  CAS  Google Scholar 

  24. R. Kawabata and R. J. Kubo (1966). J. Phys. Soc. Jpn. 21, 1765.

    Article  CAS  Google Scholar 

  25. R. Salehi, M. Arami, N. M. Mahmoodi, H. Bahrami, and S. Khorramfar (2010). Colloids. Surf. B: Biointerfaces. 80, 86.

    Article  CAS  Google Scholar 

  26. T. Rattana, S. Suwanboon, P. Amornpitoksuk, A. Haidoux, and P. Limsuwan (2009). J. Alloy Compd. 480, 603.

    Article  CAS  Google Scholar 

  27. P. M. Sivakumar, S. Balaji, V. Prabhawathi, R. Neelakandan, P. T. Manoharan, and M. Doble (2010). Carbohydr. Polym. 79, 717.

    Article  CAS  Google Scholar 

  28. A. Mihranyan, A. P. Llagostera, R. Karmhag, M. Stromme, and E. K. Ragnar (2004). Int. J. Pharm. 269, 433.

    Article  CAS  Google Scholar 

  29. J.-G. Yu, K.-L. Huang, J.-C. Tang, Q. Yang, and D.-S. Hu (2009). Int. J. Biol. Macromol. 44, 316.

    Article  CAS  Google Scholar 

  30. S. J. Kim, S. R. Shin, and S. I. Kim (2002). High Perform Polym. 14, 309.

    Article  CAS  Google Scholar 

  31. N. Raman, A. Sakthivel, and K. Rajasekaran (2009). J. Coord. Chem. 62, 1661.

    Article  CAS  Google Scholar 

  32. N. Dharmaraj, P. Viswanathamurthi, and K. Natarajan (2001). Transit. Met. Chem. 26, 105.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Education Department of Heilongjiang Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wang, X., Chang, N. et al. Rational Design of Bioactive and Antibacterial Efficient Nano-ZnO Loaded Chitosan Dressing for Improved Wound Healing after Femoral Fracture Surgery and Nursing Care Management. J Clust Sci 32, 479–487 (2021). https://doi.org/10.1007/s10876-020-01807-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01807-6

Keywords

Navigation