Skip to main content
Log in

The Effect of KcsA Channel on Lipid Bilayer Electroporation Induced by Picosecond Pulse Trains

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Membrane proteins are the major component of plasma membranes, and they play crucial roles in all organisms. To understand the influence of the presence of KcsA channel on cell membrane electroporation induced by picosecond pulse trains (psPT), in this paper, the electroporation of KcsA membrane protein system and bare lipid bilayer system (POPC) with the applied psPT are simulated using molecular dynamics (MD) method. First, we find that the average pore formation time of the KcsA system is longer than the bare system with the applied psPT. In the KcsA system, water protrusions appear more slowly. Then, the system size effects of psPT in the MD simulations are investigated. When the system size decreases, the average pore formation time of small KcsA membrane protein system is shorter than the bare system with the applied psPT. It is found that the psPT makes the protein fluctuation of small system increase greatly; meanwhile the instability of protein disturbs the water and then affects the water protrusion appearance time. Furthermore, it shows that the protein fluctuation of constant electric field is smaller than that of psPT and no field, and protein fluctuation increases with the psPT repetition frequency increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • PT Vernier ZA Levine MC Ho S Xiao I Semenov AG Pakhomov 2015 Picosecond and terahertz perturbation of interfacial water and electropermeabilization of biological membranes J Membr Biol 248 837 847

    Article  CAS  Google Scholar 

  • SA Kirsch RA Böckmann 2016 Membrane pore formation in atomistic and coarse-grained simulations Biochim Biophys Acta 1858 2266 2277

    Article  CAS  Google Scholar 

  • M Casciola MA Kasimova L Rems S Zullino F Apollonio M Tarek 2016 Properties of lipid electropores I: molecular dynamics simulations of stabilized pores by constant charge imbalance Bioelectrochemistry 109 108 116

    Article  CAS  Google Scholar 

  • L Delemotte M Tarek 2012 Molecular dynamics simulations of lipid membrane electroporation J Membr Biol 245 531 543

    Article  CAS  Google Scholar 

  • M Casciola M Tarek 2016 A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields Biochim Biophys Acta 1858 2278 2289

    Article  CAS  Google Scholar 

  • PT Vernier MJ Ziegler Y Sun MA Gundersen DP Tieleman 2006 Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico Phys Biol 3 233

    Article  CAS  Google Scholar 

  • MP Stewart R Langer KF Jensen 2018 Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts Chem Rev 118 7409 7531

    Article  CAS  Google Scholar 

  • I Uitert van S Gac Le A Berg van den 2010 The influence of different membrane components on the electrical stability of bilayer lipid membranes Biochim Biophys Acta 1798 21 31

    Article  Google Scholar 

  • GC Troiano KJ Stebe RM Raphael L Tung 1999 The effects of gramicidin on electroporation of lipid bilayers Biophys J 76 3150 3157

    Article  CAS  Google Scholar 

  • M Tarek 2005 Membrane electroporation: a molecular dynamics simulation Biophys J 88 4045 4053

    Article  CAS  Google Scholar 

  • SW Siu RA Böckmann 2007 Electric field effects on membranes: gramicidin A as a test ground J Struct Biol 157 545 556

    Article  CAS  Google Scholar 

  • Z Cournia TW Allen I Andricioaei B Antonny D Baum G Brannigan R Friedman 2015 Membrane protein structure, function, and dynamics: a perspective from experiments and theory J Membr Biol 248 611 640

    Article  CAS  Google Scholar 

  • SJ Beebe PM Fox LJ Rec ELK Willis KH Schoenbach 2003 Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells FASEB J 17 11 1493 1495

    Article  CAS  Google Scholar 

  • T Kotnik D Miklavčič 2006 Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields Biophys J 90 2 480 491

    Article  CAS  Google Scholar 

  • S Xiao S Guo V Nesin R Heller KH Schoenbach 2011 Subnanosecond electric pulses cause membrane permeabilization and cell death IEEE Trans Biomed Eng 58 1239 1245

    Article  Google Scholar 

  • JT Camp Y Jing J Zhuang JF Kolb SJ Beebe J Song KH Schoenbach 2012 Cell death induced by subnanosecond pulsed electric fields at elevated temperatures IEEE Trans Plasma Sci 40 10 2334 2347

    Article  CAS  Google Scholar 

  • YY Hua XS Wang YU Zhang CG Yao XM Zhang ZA Xiong 2012 Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells Mol Med Rep 5 4 981 987

    Article  CAS  Google Scholar 

  • H Fröhlich 1980 The biological effects of microwaves and related questions Advances in electronics and electron physics Academic Press New York 85 152

    Google Scholar 

  • PH Siegel 2004 Terahertz technology in biology and medicine IEEE Trans Microw Theory Tech 52 10 2438 2447

    Article  Google Scholar 

  • GJ Wilmink JE Grundt 2011 Invited review article: current state of research onbiological effects of terahertz radiation J Infrared Millimeter Terahertz Waves 32 10 1074 1122

    Article  Google Scholar 

  • M Borovkova M Serebriakova V Fedorov E Sedykh V Vaks A Lichutin M Khodzitsky 2017 Investigation of terahertz radiation influence on rat glial cells Biomed Opt Exp 8 1 273 280

    Article  CAS  Google Scholar 

  • RL Andrew 2001 Molecular modeling principles and applications 2 Pearson Education Limited Essex

    Google Scholar 

  • LF Pineda De Castro M Dopson R Friedman 2016 Biological membranes in extreme conditions: simulations of anionic archaeal tetraether lipid membranes PLoS ONE 11 5 e0155287

    Article  Google Scholar 

  • S Moradi A Nowroozi M Shahlaei 2019 Shedding light on the structural properties of lipid bilayers using molecular dynamics simulation: a review study RSC Adv 9 8 4644 4658

    Article  CAS  Google Scholar 

  • RA Böckmann BL Groot De S Kakorin E Neumann H Grubmüller 2008 Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations Biophys J 95 1837 1850

    Article  Google Scholar 

  • Y Zhou JH Morais-Cabral A Kaufman R MacKinnon 2001 Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution Nature 414 43

    Article  CAS  Google Scholar 

  • L Kalé R Skeel M Bhandarkar R Brunner A Gursoy N Krawetz K Schulten 1999 NAMD2: greater scalability for parallel molecular dynamics J Comput Phys 151 283 312

    Article  Google Scholar 

  • MP Allen DJ Tildesley 2017 Computer simulation of liquids Oxford University Press Oxford

    Book  Google Scholar 

  • T Darden D York L Pedersen 1993 Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems J Chem Phys 98 10089 10092

    Article  CAS  Google Scholar 

  • U Essmann L Perera ML Berkowitz T Darden H Lee LG Pedersen 1995 A smooth particle mesh Ewald method J Chem Phys 103 8577 8593

    Article  CAS  Google Scholar 

  • GJ Martyna DJ Tobias ML Klein 1994 Constant pressure molecular dynamics algorithms J Chem Phys 101 4177 4189

    Article  CAS  Google Scholar 

  • SE Feller Y Zhang RW Pastor BR Brooks 1995 Constant pressure molecular dynamics simulation: the Langevin piston method J Chem Phys 103 4613 4621

    Article  CAS  Google Scholar 

  • SY Noskov S Berneche B Roux 2004 Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands Nature 431 830

    Article  CAS  Google Scholar 

  • J Tang H Yin J Ma W Bo Y Yang J Xu Y Gong 2018 Terahertz electric field-induced membrane electroporation by molecular dynamics simulations J Membr Biol 251 681 693

    Article  CAS  Google Scholar 

  • M Tokman JH Lee ZA Levine MC Ho ME Colvin PT Vernier 2013 Electric feld-driven water dipoles: nanoscale architecture of electroporation PLoS ONE 8 e61111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61921002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubin Gong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Ma, J., Guo, L. et al. The Effect of KcsA Channel on Lipid Bilayer Electroporation Induced by Picosecond Pulse Trains. J Membrane Biol 253, 271–286 (2020). https://doi.org/10.1007/s00232-020-00123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00123-4

Keywords

Navigation