Skip to main content
Log in

Infrared Soil Moisture Retrieval Algorithm Using Temperature-Vegetation Dryness Index and Moderate Resolution Imaging Spectroradiometer Data

  • Original Article
  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Most infrared satellite remote sensors have a higher spatial resolution than microwave satellite sensors. Microwave satellite remote sensing has proven successful for the retrieval of soil moisture (SM) information. In this study, we propose a SM retrieval algorithm based on temperature vegetation dryness index (TVDI), a function of land surface temperature (LST), and the normalized difference vegetative index (NDVI) provided by Moderate Resolution Imaging Spectroradiometer (MODIS) data. We implemented the LST correction with elevation effect. Conversion relationships between TVDI and SM content for a variety of land types were obtained from spatial and temporal collocation of TVDI and Global Land Data Assimilation System (GLDAS) SM content for 2014. From the comparison with the GLDAS SM for 2015, the proposed TVDI-based SM algorithm showed good performance with CC = 0.609, bias = −0.035 m3/m3, and root-mean-square-error (RMSE) = 0.047 m3/m3, while the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) SMs present CC = 0.637 and 0.741, bias = 0.042 and 0.010 m3/m3, and RMSE = 0.152 and 0.103 m3/m3, respectively. For the in situ SM measurements of the Korea Rural Development Administration (RDA), the proposed TVDI-based SM algorithm yielded CC = 0.556, bias = −0.039 m3/m3, and RMSE = 0.051 m3/m3 excluding the winter season. Consequently, the proposed SM algorithm could contribute to complementing the low spatial resolutions of microwave satellite SM products and low temporal resolutions of GLDAS SM products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bowers, S.A., Hanks, R.J.: Reflection of radiant energy from soils. Soil Sci. 100, 130–138 (1965)

    Article  Google Scholar 

  • Capehart, W.J., Carlson, T.N.: Decoupling of surface and near-surface soil water content: a remote sensing perspective. Water Resour. Res. 33, 1383–1395 (1997)

    Article  Google Scholar 

  • Carlson, T.N.: An overview of the triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors. 7, 1612–1629 (2007)

    Article  Google Scholar 

  • Chen, C.F., Son, N.T., Chang, L.Y., Chen, C.C.: Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data. Appl. Geogr. 31, 463–475 (2011)

    Article  Google Scholar 

  • Chen, S., Wen, Z., Jiang, H., Zhao, Q., Zhang, X., Chen, Y.: Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability. 7, 11401–11417 (2015)

    Article  Google Scholar 

  • Cho, J., Ryu, J.-H., Yeh, P.J.-F., Lee, Y.-W., Hong, S.: Satellite-based assessment of Amazonian surface dryness due to deforestation. Rem. Sens. Lett. 7, 71–80 (2016)

    Article  Google Scholar 

  • De Jeu, R.A., Wagner, W., Holmes, T.R.H., Dolman, A.J., van De Giesen, N.C., Friesen, J.: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 29, 399–420 (2008)

    Article  Google Scholar 

  • Dobson, M.C., Ulaby, F.T., Hallikainen, M.T., El-Rayes, M.A.: Microwave dielectric behavior of wet soil, II, dielectric mixing models. IEEE Trans. Geosci. Rem. Sens. 23, 35–46 (1985)

    Article  Google Scholar 

  • Ellingson, S.W., Johnson, J.T.: A polarimetric survey of radio frequency interference in C- and X-bands in the continental United States using WindSat radiometry. IEEE Trans. Geosci. Rem. Sens. 44, 540–548 (2006)

    Article  Google Scholar 

  • Escadafal, R., Girard, M.C., Courault, D.: Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Rem. Sens. Environ. 27, 37–46 (1989)

    Article  Google Scholar 

  • Gillies, R.R., Carlson, T.N.: Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. 34, 745–756 (1995)

    Article  Google Scholar 

  • Gillies, R.R., Kustas, W.P., Humes, K.S.: A verification of the 'triangle' method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface. Int. J. Rem. Sens. 18, 3145–3166 (1997)

    Article  Google Scholar 

  • Han, Y., Wang, Y., Zhao, Y.: Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Trans. Geosci. Rem. Sens. 48, 2509–2515 (2010)

    Article  Google Scholar 

  • Hong, S., Shin, I.: A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing. J. Hydrol. 405, 24–30 (2011)

    Article  Google Scholar 

  • Jackson, T.J.: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process. 7, 139–152 (1993)

    Article  Google Scholar 

  • Khandelwal, S., Goyal, R., Kaul, N., Mathew, A.: Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur. India. Egypt. J. Rem. Sens. Space Sci. 21, 87–94 (2017)

    Google Scholar 

  • Kwon, Y.-J., Ban, H., Hong, S.: Elevation effect on TVDI-based soil moisture retrieval algorithm using MODIS LST and NDVI products. Proceedings of the SPIE, 10421 (2017)

  • Li, L., Njoku, E.G., Im, E., Chang, P.S., Germain, K.S.: A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Rem. Sens. 42, 380–390 (2004)

    Article  Google Scholar 

  • Liu, W., Baret, F., Gu, X., Zhang, B., Tong, Q., Zheng, L.: Evaluation of methods for soil surface moisture estimation from reflectance data. Int. J. Rem. Sens. 24, 2069–2083 (2003)

    Article  Google Scholar 

  • Lobell, D.B., Asner, G.P.: Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 66, 722–727 (2002)

    Article  Google Scholar 

  • Mattikalli, N.M.: Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements. Rem. Sens. Environ. 59, 14–28 (1997)

    Article  Google Scholar 

  • Moran, M.S., Rahman, A.F., Washburne, J.C., Goodrich, D.C., Weltz, M.A., Kustas, W.P.: Combining the penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland. Agric. For. Meteorol. 80, 87–109 (1996)

    Article  Google Scholar 

  • Patel, N.R., Anapashsha, R., Kumar, S., Saha, S.K., Dadhwal, V.K.: Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Rem. Sens. 30, 23–39 (2009)

    Article  Google Scholar 

  • Petropoulos, G., Carlson, T.N., Wooster, M.J., Islam, S.: A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 33, 224–250 (2009)

    Article  Google Scholar 

  • Price, J.C.: Thermal inertia mapping: a new view of the earth. J. Geophys. Res. 82, 2582–2590 (1977)

    Article  Google Scholar 

  • Price, J.C.: Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Rem. Sens. 28, 940–948 (1990)

    Article  Google Scholar 

  • Sandholt, I., Rasmussen, K., Andersen, J.: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Rem. Sens. Environ. 79, 213–224 (2002)

    Article  Google Scholar 

  • Stoner, E.R., Baumgardner, M.F.: Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 45, 1161–1165 (1981)

    Article  Google Scholar 

  • Wang, J.R., Schumugge, T.J.: An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Rem. Sens. 18, 288–295 (1980)

    Article  Google Scholar 

  • Wang, C., Qi, S., Niu, Z., Wang, J.: Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Can. J. Rem. Sens. 30, 671–679 (2004)

    Article  Google Scholar 

  • Wigneron, J.P., Calyet, J.C., Pellarin, T., Van De Griend, A.A., Berger, M., Ferrazzoli, P.: Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans. Rem.Sens. Environ. 85, 489–506 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the critical and helpful comments from anonymous reviewers and editor. This work was supported by (1) “Development of Hydrology, wildfire, and statistical Applications” project, funded by Electronics and Telecommunications Research Institute (ETRI), which is a subproject of “Development of Geostationary Meteorological Satellite Ground Segment (NMSC-2019-01)” program funded by National Meteorological Satellite Center (NMSC) of Korea Meteorological Administration (KMA), (2) Korea Environment Industry & Technology Institute (KEITI) through Advanced Water Management Research Program, funded by Korea Ministry of Environment (MOE) (Grant 83079), and (3) KMA Research and Development Program under Grant KMI2018-05710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungwook Hong.

Additional information

Responsible Editor: Sung-Rae Chung.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, YJ., Ryu, S., Cho, J. et al. Infrared Soil Moisture Retrieval Algorithm Using Temperature-Vegetation Dryness Index and Moderate Resolution Imaging Spectroradiometer Data. Asia-Pacific J Atmos Sci 56, 275–289 (2020). https://doi.org/10.1007/s13143-020-00174-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-020-00174-6

Keywords

Navigation