Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:00:26.878Z Has data issue: false hasContentIssue false

A new terrestrial trace fossil Feoichnus martini n. isp. from the Upper Cretaceous Two Medicine Formation (USA)

Published online by Cambridge University Press:  13 May 2020

Giulio Panascí
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, Montana59717-2760, USA
David J. Varricchio
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, Montana59717-2760, USA

Abstract

A new trace fossil, Feoichnus martini new ichnospecies, from the Two Medicine Formation is here described. This ichnotaxon is reported from the upper Campanian deposits of the Egg Mountain locality (Montana) and consists of a hemispherical to hemiellipsoidal structure with a truncated upper edge, and a regular, rounded lower edge marked by a lined border composed of stained layers. The trace maker likely impregnated the border using organic fluids. The simple lined wall observed in F. martini n. isp. suggests that the structure was produced by an invertebrate soil-dwelling organism, likely an insect. Specimens are preserved as casts in calcitic Inseptisols alongside an abundant vertebrate fossil record composed by dinosaurian and nondinosaurian fossil remains, dinosaur eggs and nest structures, and pervasive insect bioturbation. Feoichnus martini n. isp. represents an additional, minor component of the impoverished Celliforma ichnofacies reported at Egg Mountain and expands the paleogeographical distribution of the ichnogenus Feoichnus Krause et al., 2008 to the Upper Cretaceous deposits of Montana, USA.

UUID: http://zoobank.org/7c1a5026-7f27-4f12-a9fb-1eb8daa93baf

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Zarza, A.M., Genise, J.F., and Verde, M., 2014, Paleoenvironments and ichnotaxonomy of insect trace fossils in continental mudflat deposits of the Miocene Calatayud-Daroca Basin, Zaragoza, Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 414, p. 342351, doi:10.1016/j.palaeo.2014.09.012.CrossRefGoogle Scholar
Bedatou, E., Melchor, R.N., Bellosi, E., and Genise, J.F., 2008, Crayfish burrows from Late Jurassic–Late Cretaceous continental deposits of Patagonia: Argentina: Their palaeoecological, palaeoclimatic and palaeobiogeographical significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257, p. 169184, doi:10.1016/j.palaeo.2007.09.020.CrossRefGoogle Scholar
Brockmann, H., 1979, Nest-site selection in the great golden digger wasp, Sphex ichneumoneus L. (Sphecidae): Ecological Entomology, v. 4, no. 3, p. 211224.Google Scholar
Bromley, R.G., 1996, Trace Fossils: Biology, Taxonomy and Applications: New York, Routledge, 378 p.CrossRefGoogle Scholar
Buatois, L.A., and Mángano, M.G., 2011, Ichnology: Organism-substrate Interactions in Space and Time: New York, Cambridge University Press, 12 p.Google Scholar
Chin, K., and Gill, B.D., 1996, Dinosaurs, dung beetles, and conifers: Participants in a Cretaceous food web: Palaios, v. 11, p. 280285.Google Scholar
DeMar, D.G. Jr., Conrad, J.L., Head, J.J., Varricchio, D.J., and Wilson, G.P., 2017, A new Late Cretaceous iguanomorph from North America and the origin of New World Pleurodonta (Squamata, Iguania): Proceedings of the Royal Society, B: Biological Sciences, v. 284, no. 1847, p. 20161902, doi:10.1098/rspb.2016.1902.Google Scholar
Downing, H., 2004, Construction behavior of insects, in Capinera, J.L., ed., Encyclopedia of Entomology: Heidelberg, Springer Netherlands, p. 605613.Google Scholar
Edwards, N., Jarzembowski, E.A., Pain, T., and Daley, B., 1998, Cocoon-like trace fossils from the lacustrine-palustrine Bembridge Limestone Formation (late Eocene), southern England: Proceedings of the Geologists’ Association, v. 109, no. 1, p. 2532.Google Scholar
Falcon-Lang, H.J., 2003, Growth interruptions in silicified conifer woods from the Upper Cretaceous Two Medicine Formation, Montana, USA: Implications for palaeoclimate and dinosaur palaeoecology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 199, p. 299314, doi:10.1016/S0031-0182(03)00539-X.Google Scholar
Freimuth, J.W., and Varricchio, J.D., 2019, Insect trace fossils elucidate depositional environments and sedimentation at a dinosaur nesting site from the Cretaceous (Campanian) Two Medicine Formation of Montana: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 534, p. 109262, doi:10.1016/j.palaeo.2019.109262.CrossRefGoogle Scholar
Genise, J.F., 2004, Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, ants and termites: Geological Society, London, Special Publications, v. 228, no. 1, p. 419453, doi:10.1144/GSL.SP.2004.228.01.19.CrossRefGoogle Scholar
Genise, J.F., 2016, Ichnoentomology: Insect Traces in Soils and Paleosols: New York, Springer, 565 p.Google Scholar
Genise, J.F. and Harrison, T., 2018, Walking on ashes: Insect trace fossils from Laetoli indicate poor grass cover associated with early hominin environments: Palaeontology, v. 61, no. 4, p. 128, doi:10.1111/pala.12357.Google Scholar
Genise, J.F., Mángano, M.G., Buatois, L.A., Laza, J.H., and Verde, M., 2000, Insect trace fossil associations in paleosols: The Coprinisphaera ichnofacies: Palaios, v. 15, p. 4964, doi:10.1669/0883-1351(2000)015 < 0049:ITFAIP > 2.0.CO;2.Google Scholar
Genise, J.F., Melchor, R.N., Bellosi, E.S., González, M.G., and Krause, M., 2007, New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina: Cretaceous Research, v. 28, p. 545559, doi:10.1016/j.cretres.2006.08.007.CrossRefGoogle Scholar
Genise, J.F., Bedatou, E., and Melchor, R.N., 2008, Terrestrial crustacean breeding trace fossils from the Cretaceous of Patagonia (Argentina): Palaeobiological and evolutionary significance: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 264, p. 128139, doi:10.1016/j.palaeo.2008.04.004.CrossRefGoogle Scholar
Genise, J.F., Melchor, R.N., Bellosi, E.S., and Verde, M., 2010, Invertebrate and vertebrate trace fossils from continental carbonates: Developments in Sedimentology, v. 61, p. 319369, doi:10.1016/S0070-4571(09)06107-X.Google Scholar
Genise, J.F., Bedatou, E., Bellosi, E.S., Sarzetti, L.C., Sánchez, M.V., and Krause, J.M., 2016, The Phanerozoic four revolutions and evolution of paleosol ichnofacies, in Mángano, M., and Buatois, L., eds., The Trace Fossil Record of Major Evolutionary Events: Dordrecht, Springer, p. 301370.Google Scholar
Hallam, A., 1975, Preservation of trace fossils, in Frey, R.W., ed., The Study of Trace Fossils: New York, Springer-Verlag, p. 5563.Google Scholar
Horner, J.R., 1982, Evidence of colonial nesting and site fidelity among ornithischian dinosaurs: Nature, v. 297, p. 675.Google Scholar
Horner, J.R., 1984, The nesting behavior of dinosaurs: Scientific American, v. 250, no. 4, p. 130137.Google Scholar
Horner, J.R., 1987, Ecologic and behavioral implications derived from a dinosaur nesting site, in Czerkas, S.J., ed., Dinosaurs Past and Present, Volume 2: Seattle, University of Washington Press, p. 5063.Google Scholar
Horner, J.R., 1989, The Mesozoic terrestrial ecosystems of Montana, in French, D.E., and Grabb, R.F., eds., Montana Geological Society Field Conference Guidebook: Montana Centennial Edition, Geologic Resources of Montana: [Billings], Montana Geological Society, p. 153–162.Google Scholar
Karkanas, P., and Goldberg, P., 2018, Phosphatic features, in Stoops, G., Marcelino, V., and Mees, F., eds., Interpretation of Micromorphological Features of Soils and Regoliths (second edition): Cambridge, Elsevier, p. 323346.Google Scholar
Kaiser, K., and Guggenberger, G., 2000, The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils: Organic Geochemistry, v. 31, p. 711725, doi:10.1016/S0146-6380(00)00046-2.Google Scholar
Krause, J., Bown, T.M., Bellosi, E.S., and Genise, J.F., 2008, Trace fossils of cicadas in the Cenozoic of central Patagonia, Argentina: Palaeontology, v. 51, p. 405418, doi:10.1111/j.1475-4983.2008.00753.x.Google Scholar
Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y., 2012, Preservation of organic matter in sediments promoted by iron: Nature, v. 483, no. 7388, p. 198200, doi:10.1038/nature10855.CrossRefGoogle ScholarPubMed
Lorenz, J.C., and Gavin, W., 1984, Geology of the Two Medicine Formation and the sedimentology of a dinosaur nesting ground, in McBane, J.D., and Garrison, P.B., eds., Montana Geological Society 1984 Field Conference Guidebook: Helena, Montana Geological Society, p. 175186.Google Scholar
Martin, A.J., and Varricchio, D.J., 2011, Paleoecological utility of insect trace fossils in dinosaur nesting sites of the Two Medicine Formation (Campanian), Choteau, Montana: Historical Biology, v. 23, p. 1525, doi:10.1080/08912963.2010.505285.CrossRefGoogle Scholar
Montellano, M., 1988, Alphadon halleyi (Didelphidae, Marsupialia) from the Two Medicine Formation (Late Cretaceous, Judithian) of Montana: Journal of Vertebrate Paleontology, v. 8, no. 4, p. 378382.CrossRefGoogle Scholar
Montellano, M., Weil, A., and Clemens, W.A., 2000, An exceptional specimen of Cimexomys judithae (Mammalia: Multituberculata) from the Campanian Two Medicine Formation of Montana, and the phylogenetic status of Cimexomys: Journal of Vertebrate Paleontology, v. 20, no. 2, p. 333340, doi:10.1671/0272-4634(2000)020[0333:AESOCJ]2.0.CO;2.Google Scholar
O'Neill, K.M., 2001, Solitary Wasps: Behavior and Natural History: Ithaca, Cornell University Press, 283 p.Google Scholar
Oser, S.E., 2014, Fossil eggs and perinatal remains from the Upper Cretaceous Two Medicine Formation of Montana: Description and implications [Ph.D. dissertation]: Bozeman, Montana State University, 135 p.Google Scholar
Retallack, G.J., 1984, Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota: Journal of Paleontology, v. 58, p. 571592.Google Scholar
Retallack, G.J., 1997, Dinosaurs and dirt, in Wolberg, D.L., Stump, E., and Rosenberg, G.D., eds., DinoFest International: Proceedings of a Symposium Sponsored by Arizona State University: Philadelphia, Academy of Natural Sciences, p. 345359.Google Scholar
Rogers, R.R., 1990, Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of northwestern Montana: Evidence for drought-related mortality: Palaios, v. 5, p. 394413.Google Scholar
Rogers, R.R., Swisher, C.C., and Horner, J.R., 1993, 40Ar/39Ar age and correlation of the nonmarine Two Medicine Formation (Upper Cretaceous), northwestern Montana, U.S.A.: Canadian Journal of Earth Science, v. 30, p. 10661075.Google Scholar
Rogers, R.R., Fricke, H.C., Addona, V., Canavan, R.R., Dwyer, C.N., Harwood, C.L., Koenig, A.E., Murray, R., Thole, J.T., and Williams, J., 2010, Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the Upper Cretaceous Two Medicine and Judith River formations of Montana: Palaios, v. 25, no. 3, 183195, doi:10.2110/palo.2009.p09-084r.CrossRefGoogle Scholar
Savrda, C.E., 2007, Taphonomy of trace fossils, in Miller, W. III, ed., Trace Fossils: Oxford, Elsevier, p. 92109.CrossRefGoogle Scholar
Varricchio, D.J., Jackson, F., Borkowski, J.J., and Horner, J.R., 1997, Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits: Nature, v. 385, no. 6613, p. 247250.CrossRefGoogle Scholar
Varricchio, D.J., Jackson, F., and Trueman, C.N., 1999, A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus: Journal of Vertebrate Paleontology, v. 19, no. 1, p. 91100.Google Scholar
Varricchio, D.J., Koeberl, C., Raven, R.F., Wolbach, W.S., Elsik, W.C., and Miggins, D.P., 2010, Tracing the Manson impact event across the Western Interior Cretaceous Seaway: Geological Society of America Special Papers, v. 465, p. 269299, doi:10.1130/2010.2465(17).Google Scholar