Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Dressing up artificial viral capsids self-assembled from C-terminal-modified β-annulus peptides

Abstract

A variety of chemical approaches for the rational design of artificial proteins and peptides have been developed in recent years for the construction of self-assembled nanocapsules. It was previously found that a synthetic 24-mer β-annulus peptide, which participates in the formation of the dodecahedral internal skeleton of the tomato bushy stunt virus capsid, spontaneously self-assembled into artificial viral capsids with a size of 30–50 nm. These artificial viral capsids were established to encapsulate various guest molecules, such as anionic dyes, DNA, quantum dots, and His-tagged proteins. The artificial viral capsids could also be dressed up with gold nanoparticles, single-stranded DNA, coiled-coil spikes, and proteins by modifying with these molecules at the C-terminus of β-annulus peptides. The artificial viral capsids were notably stabilized by dressing up with human serum albumin and acquired enzymatic activity by dressing up with ribonuclease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manchester M, Steinmetz NF, editors. Viruses and nanotechnology: current topics in microbiology and immunology. Belrin: Springer; 2009.

  2. Khudyakov Y, Pumpens P, editors. Viral nanotechnology. Boca Raton, Florida: CRC Press; 2016.

  3. Douglas T, Young M. Viruses: making friends with old foes. Science. 2006;312:873–5.

    PubMed  CAS  Google Scholar 

  4. Steinmetz NF, Evans DJ. Utilisation of plant viruses in bionanotechnology. Org Biomol Chem. 2007;5:2891–902.

    PubMed  CAS  Google Scholar 

  5. Papapostolou D, Howorka S. Engineering and exploiting protein assemblies in synthetic biology. Mol BioSyst. 2009;5:723–32.

    PubMed  CAS  Google Scholar 

  6. Witus LS, Francis MB. Using synthetically modified proteins to make new materials. Acc Chem Res. 2011;44:774–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Bronstein LM. Virus-based nanoparticles with inorganic cargo: what does the future hold? Small. 2011;7:1609–18.

    PubMed  CAS  Google Scholar 

  8. van Rijn P, Schirhagl R. Viruses, artificial viruses and virus-based structures for biomedical applications. Adv Healthc Mater. 2016;5:1386–400.

    PubMed  Google Scholar 

  9. Azuma Y, Edwardson TGW, Hilvert D. Tailoring lumazine synthase assemblies for bionanotechnology. Chem Soc Rev. 2018;47:3543–57.

    PubMed  CAS  Google Scholar 

  10. Douglas T, Young M. Host–guest encapsulation of materials by assembled virus protein cages. Nature. 1998;393:152–5.

    CAS  Google Scholar 

  11. Aragonès MC, Engelkamp H, Claessen VI, Sommerdijik NAJM, Rowan AE, Christianen PCM, Maan JC, Verduin BJM, Cornelissen JJLM, Nolte RJM. A virus-based single-enzyme nanoreactor. Nat Nanotechnol. 2007;2:635–9.

    Google Scholar 

  12. Matsuura K. Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chem Commun. 2018;54:8944–59.

    CAS  Google Scholar 

  13. Matsuurua K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 2014;4:2942–53.

    CAS  Google Scholar 

  14. Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev. 2016;116:13571–632.

    PubMed  CAS  Google Scholar 

  15. Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev. 2018;47:9069–105.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Sainsbury F. Emergence by design in self-assembling protein shells. ACS Nano. 2020;14:2565–8.

    PubMed  CAS  Google Scholar 

  17. Lai YT, Tsai KL, Sawaya MR, Asturias FJ, Yeates TO. Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. J Am Chem Soc. 2013;135:7738–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO. Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem. 2014;6:1065–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang PS, Ravichandran R, Yi S, Davis TN, Gonen T, King NP, Baker D. Design of a hyperstable 60-subunit protein icosahedron. Nature. 2016;535:136–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Kawakami N, Kondo H, Matsuzawa Y, Hayasaka K, Nasu E, Sasahara K, Arai R, Miyamoto K. Design of hollow protein nanoparticles with modifiable interior and exterior surfaces. Angew Chem Int Ed Engl. 2018;57:12400–4.

    PubMed  CAS  Google Scholar 

  21. Cristie-David AS, Chen J, Nowak DB, Bondy AL, Sun K, Park SI, Holl MMB, Su M, Marsh ENG. Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. J Am Chem Soc. 2019;141:9207–16.

    PubMed  Google Scholar 

  22. Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature. 2019;569:438–42.

    PubMed  CAS  Google Scholar 

  23. Ramakers BEI, van Hest JCM, Löwik DWPM. Molecular tools for the construction of peptide-based materials. Chem Soc Rev. 2014;43:2743–56.

    PubMed  CAS  Google Scholar 

  24. De Santis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev. 2015;44:8288–300.

    PubMed  Google Scholar 

  25. Lou S, Wang X, Yu Z, Shi L. Peptide tectonics: encoded structural complementarity dictates programmable self-assembly. Adv Sci. 2019;6:1802043.

    Google Scholar 

  26. Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN. Self-assembling cages from coiled-coil peptide modules. Science. 2013;340:595–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Ross JF, Bridges A, Fletcher JM, Shoemark D, Alibhai D, Bray HEV, Beesley JL, Dawson WM, Hodgson LR, Mantell J, Verkade P, Edge CM, Sessions RB, Tew D, Woolfson DN. Decorating self-assembled peptide cages with proteins. ACS Nano. 2017;11:7901–14.

    PubMed  CAS  Google Scholar 

  28. De Santis E, Alkassem H, Lamarre B, Faruqui N, Bella A, Noble JE, Micale N, Ray S, Burns JR, Yon AR, Hoogenboom BW, Ryadnov MG. Antimicrobial peptide capsids of de novo design. Nat Commun. 2017;8:2263.

    PubMed  PubMed Central  Google Scholar 

  29. Kepiro IE, Marzuoli I, Hammond K, Ba X, Lewis H, Shaw M, Gunnoo SB, De Santis E, Łapińska U, Pagliara S, Holmes MA, Lorenz CD, Hoogenboom BW, Fraternali F, Ryadnov MG. Engineering chirally blind protein pseudocapsids into antibacterial persisters. ACS Nano. 2020;14:1609–22.

    PubMed  CAS  Google Scholar 

  30. Matsuura K, Murasato K, Kimizuka N. Artificial peptide-nanospheres self-assembled from three-way junctions of β-sheet-forming peptides. J Am Chem Soc. 2005;127:10148–9.

    PubMed  CAS  Google Scholar 

  31. Matsuura K, Watanabe K, Sakurai K, Matsuzaki T, Kimizuka N. Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew Chem Int Ed Engl. 2010;49:9662–5.

    PubMed  CAS  Google Scholar 

  32. Olson AJ, Bricogne G, Harrison SC. Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution. J Mol Biol. 1983;171:61–93.

    PubMed  CAS  Google Scholar 

  33. Hopper P, Harrison SC, Sauer RT. Structure of tomato bushy stunt virus. V. Coat protein sequence determination and its structural implications. J Mol Biol. 1984;177:701–13.

    PubMed  CAS  Google Scholar 

  34. Matsuura K, Watanabe K, Matsushita Y, Kimizuka N. Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polym J. 2013;45:529–34.

    CAS  Google Scholar 

  35. Fujita S, Matsuura K. Encapsulation of CdTe quantum dots into synthetic viral capsids. Chem Lett. 2016;45:922–4.

    CAS  Google Scholar 

  36. Fujita S, Matsuura K. Inclusion of zinc oxide nanoparticles into virus-like peptide nanocapsules self-assembled from viral β-annulus peptide. Nanomaterials. 2017;4:778–91.

    Google Scholar 

  37. Matsuura K, Nakamura T, Watanabe K, Noguchi T, Minamihata K, Kamiya N, Kimizuka N. Self-assembly of Ni-NTA-modified β-annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Org Biomol Chem. 2016;14:7869–74.

    PubMed  CAS  Google Scholar 

  38. Nakamura Y, Inaba H, Matsuura K. Construction of artificial viral capsids encapsulating short DNAs via disulfide bonds and controlled release of DNAs by reduction. Chem Lett. 2019;48:544–6.

    CAS  Google Scholar 

  39. Matsuura K, Ueno G, Fujita S. Self-assembled artificial viral capsid decorated with gold nanoparticles. Polym J. 2015;47:146–51.

    CAS  Google Scholar 

  40. Fujita S, Matsuura K. Self-assembled artificial viral capsids bearing coiled-coils at the surface. Org Biomol Chem. 2017;15:5070–7.

    PubMed  CAS  Google Scholar 

  41. Nakamura Y, Yamada S, Nishikawa S, Matsuura K. DNA-modified artificial viral capsids self-assembled from DNA-conjugated β-annulus peptide. J Pept Sci. 2017;23:636–43.

    PubMed  CAS  Google Scholar 

  42. Matsuura K, Honjo T. Artificial viral capsid dressed up with human serum albumin. Bioconj Chem. 2019;30:1636–41.

    CAS  Google Scholar 

  43. Raines RT, Ribonuclease A, Chem Rev. 1998;98:1045–66.

  44. Matsuura K, Ota J, Fujita S, Shiomi Y, Inaba H. Construction of ribonuclease-decorated artificial virus-like capsid by peptide self-assembly. J Org Chem. 2020;85:1668–73.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by The Asahi Glass Foundation, a Grant-in-Aid for Scientific Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems” (JSPS KAKENHI Grant No. JP18H04558), and Grant-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant No. JP18H02089). I would like to thank Prof. Nobuo Kimizuka (Kyushu University), Dr Hiroshi Inaba (Tottori University) and all the coworkers, whose names are cited in the references, for their valuable contributions. The author would like to thank MARUZEN-YUSHODO Co., Ltd, for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Matsuura.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, K. Dressing up artificial viral capsids self-assembled from C-terminal-modified β-annulus peptides. Polym J 52, 1035–1041 (2020). https://doi.org/10.1038/s41428-020-0355-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0355-4

This article is cited by

Search

Quick links