Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclic Tau-derived peptides for stabilization of microtubules

Abstract

The cyclization of peptides is a valuable strategy for the development of binding motifs to target proteins with improved affinity. Microtubules (MTs) are important targets for therapeutics, and a variety of MT-targeted drugs and peptides have recently been developed. We have previously designed a Tau-derived peptide (TP) that binds to the interior of MTs. In the present study, the development of a cyclic TP (TCP) for enhanced binding to tubulin and the stabilization of MTs are described. The fluorescently labeled cyclic peptide containing three glycine linkers (TCP3-TMR) exhibited a remarkably enhanced binding affinity to tubulin. The cyclic peptide was also demonstrated to stabilize MTs by enhancing polymerization and reducing depolymerization. Moreover, MTs were effectively formed by the treatment of cyclic peptides in the presence of guanosine triphosphate (GTP), while the linear peptide showed no such effect. These findings indicate that TCP is a useful binding motif that can stabilize MTs and is valuable for various therapeutic and material applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of protein–protein interactions. Chem Rev. 2014;114:4695.

    Article  CAS  Google Scholar 

  2. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed. 2015;54:8896.

    Article  CAS  Google Scholar 

  3. Wójcik P, Berlicki Ł. Peptide-based inhibitors of protein–protein interactions. Bioorg Med Chem Lett. 2016;26:707.

    Article  CAS  Google Scholar 

  4. Hamley IW. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117:14015.

    Article  CAS  Google Scholar 

  5. Inaba H, Matsuura K. Peptide nanomaterials designed from natural supramolecular systems. Chem Rec. 2019;19:843.

    Article  CAS  Google Scholar 

  6. Driggers EM, Hale SP, Lee J, Terrett NK. The exploration of macrocycles for drug discovery—an underexploited structural class. Nat Rev Drug Discov. 2008;7:608.

    Article  CAS  Google Scholar 

  7. Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed. 2014;53:13020.

    Article  CAS  Google Scholar 

  8. Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol. 2017;38:24.

    Article  CAS  Google Scholar 

  9. Vinogradov AA, Yin Y, Suga H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc. 2019;141:4167.

    Article  CAS  Google Scholar 

  10. Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides. Chem Rev. 2019;119:10241.

    Article  CAS  Google Scholar 

  11. Udugamasooriya G, Saro D, Spaller MR. Bridged peptide macrocycles as ligands for PDZ domain proteins. Org Lett. 2005;7:1203.

    Article  CAS  Google Scholar 

  12. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253.

    Article  CAS  Google Scholar 

  13. Matamoros AJ, Baas PW. Microtubules in health and degenerative disease of the nervous system. Brain Res Bull. 2016;126:217.

    Article  CAS  Google Scholar 

  14. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485.

    Article  CAS  Google Scholar 

  15. Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev. 2017;46:5570.

    Article  CAS  Google Scholar 

  16. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, et al. Insights into the mechanism of microtubule stabilization by taxol. Proc Natl Acad Sci USA. 2006;103:10166.

    Article  CAS  Google Scholar 

  17. Biswas A, Kurkute P, Saleem S, Jana B, Mohapatra S, Mondal P, et al. Novel hexapeptide interacts with tubulin and microtubules, inhibits Aβ fibrillation, and shows significant neuroprotection. ACS Chem Neurosci. 2015;6:1309.

    Article  CAS  Google Scholar 

  18. Mondal P, Das G, Khan J, Pradhan K, Ghosh S. Crafting of neuroprotective octapeptide from taxol-binding pocket of β-tubulin. ACS Chem Neurosci. 2018;9:615.

    Article  CAS  Google Scholar 

  19. Mondal P, Das G, Khan J, Pradhan K, Mallesh R, Saha A, et al. Potential neuroprotective peptide emerged from dual neurotherapeutic targets: a fusion approach for the development of anti-alzheimer’s lead. ACS Chem Neurosci. 2019;10:2609.

    Article  CAS  Google Scholar 

  20. Brindisi M, Maramai S, Brogi S, Fanigliulo E, Butini S, Guarino E, et al. Development of novel cyclic peptides as pro-apoptotic agents. Eur J Med Chem. 2016;117:301.

    Article  CAS  Google Scholar 

  21. Inaba H, Yamamoto T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Molecular encapsulation inside microtubules based on Tau-derived peptides. Chem Eur J. 2018;24:14958.

    Article  CAS  Google Scholar 

  22. Kar S, Fan J, Smith MJ, Goedert M, Amos LA. Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 2003;22:70.

    Article  CAS  Google Scholar 

  23. Kadavath H, Jaremko M, Jaremko Ł, Biernat J, Mandelkow E, Zweckstetter M. Folding of the Tau protein on microtubules. Angew Chem Int Ed. 2015;54:10347.

    Article  CAS  Google Scholar 

  24. Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Fluorescent Tau-derived peptide for monitoring microtubules in living cells. ACS Omega. 2019;4:11245.

    Article  CAS  Google Scholar 

  25. Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun. 2019;55:9072.

    Article  CAS  Google Scholar 

  26. Löwe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 Å resolution. J Mol Biol. 2001;313:1045.

    Article  CAS  Google Scholar 

  27. Hipolito CJ, Suga H. Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems. Curr Opin Chem Biol. 2012;16:196.

    Article  CAS  Google Scholar 

  28. Kamber B, Hartmann A, Eisler K, Riniker B, Rink H, Sieber P, et al. The synthesis of cystine peptides by iodine oxidation of S‐trityl‐cysteine and S‐acetamidomethyl‐cysteine peptides. Helv Chim Acta. 1980;63:899.

    Article  CAS  Google Scholar 

  29. Jiang S, Liao C, Bindu L, Yin B, Worthy KW, Fisher RJ, et al. Discovery of thioether-bridged cyclic pentapeptides binding to Grb2-SH2 domain with high affinity. Bioorg Med Chem Lett. 2009;19:2693.

    Article  CAS  Google Scholar 

  30. Roxin Á, Chen J, Scully CCG, Rotestein BH, Yudin AK, Zheng G. Conformational modulation of in vitro activity of cyclic RGD peptides via aziridine aldehyde-driven macrocyclization chemistry. Bioconjugate Chem. 2012;23:1387.

    Article  CAS  Google Scholar 

  31. Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell. 1992;3:1155.

    Article  CAS  Google Scholar 

  32. Caplow M, Shanks J, Ruhlen R. How taxol modulates microtubule disassembly. J Biol Chem. 1994;269:23399.

    PubMed  CAS  Google Scholar 

  33. Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell. 2014;157:1117.

    Article  CAS  Google Scholar 

  34. Hess H, Vogel V. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev Mol Biotechnol. 2001;82:67.

    Article  CAS  Google Scholar 

  35. Kabir AMR, Kakugo A. Study of active self-assembly using biomolecular motors. Polym J. 2018;50:1139.

    Article  CAS  Google Scholar 

  36. Bachand GD, Spoerke ED, Stevens MJ. Microtubule-based nanomaterials: exploiting nature’s dynamic biopolymers. Biotechnol Bioeng. 2015;112:1065.

    Article  CAS  Google Scholar 

  37. Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura S-IM. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Rob. 2017;2:eaal3735.

    Article  Google Scholar 

  38. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, et al. DNA-assisted swarm control in a biomolecular motor system. Nat Commun. 2018;9:453.

    Article  CAS  Google Scholar 

  39. Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, et al. Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett. 2019;19:3933.

    Article  CAS  Google Scholar 

  40. Inoue D, Gutmann G, Nitta T, Kabir AMR, Konagaya A, Tokuraku K, et al. Adaptation of patterns of motile filaments under dynamic boundary conditions. ACS Nano. 2019;13:12452.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Y. Manabe and Professor K. Fukase (Osaka University) for the analysis of the peptides by LC-MS. This work was supported by KAKENHI (No. 17K14517 and 19K15699 for HI) from the Japan Society for the Promotion of Science (JSPS), the Inamori Foundation, and Konica Minolta Science and Technology Foundation for Konica Minolta Imaging Science Encouragement Award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Inaba or Kazunori Matsuura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, H., Nagata, M., Miyake, K.J. et al. Cyclic Tau-derived peptides for stabilization of microtubules. Polym J 52, 1143–1151 (2020). https://doi.org/10.1038/s41428-020-0356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0356-3

This article is cited by

Search

Quick links