Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clinical characterization of patients with leucine-rich repeat kinase 2 genetic variants in Japan

Abstract

Variants of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of familial Parkinson’s disease (PD). We aimed to investigate the genetic and clinical features of patients with PD and LRRK2 variants in Japan by screening for LRRK2 variants in three exons (31, 41, and 48), which include the following pathogenic mutations: p.R1441C, p.R1441G, p.R1441H, p.G2019S, and p.I2020T. Herein, we obtained data containing LRRK2 variants derived from 1402 patients with PD (653 with sporadic PD and 749 with familial PD). As a result, we successfully detected pathogenic variants (four with p.R1441G, five with p.R1441H, seven with p.G2019S, and seven with p.I2020T) and other rare variants (two with p.V1447M, one with p.V1450I, one with p.T1491delT, and one with p.H2391Q). Two risk variants, p.P1446L and p.G2385R, were found in 10 and 146 patients, respectively. Most of the patients presented the symptoms resembling a common type of PD, such as middle-aged onset, tremor, akinesia, rigidity, and gait disturbance. Dysautonomia, cognitive decline, and psychosis were rarely observed. Each known pathogenic variant had a different founder in our cohort proven by haplotype analysis. The generation study revealed that the LRRK2 variants p.G2019S and p.I2020T were derived 3500 and 1300 years ago, respectively. Our findings present overviews of the prevalence and distribution of LRRK2 variants in Japanese cohorts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91:1161–218.

    Article  CAS  PubMed  Google Scholar 

  2. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301.

    Article  CAS  PubMed  Google Scholar 

  3. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.

    Article  CAS  PubMed  Google Scholar 

  4. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron.2004;44:595–600.

    Article  CAS  PubMed  Google Scholar 

  5. Di Fonzo A, Rohe CF, Ferreira J, Chien HF, Vacca L, Stocchi F, et al. A frequent LRRK2 gene mutation associated with autosomal dominant Parkinson’s disease. Lancet. 2005;365:412–5.

    Article  PubMed  CAS  Google Scholar 

  6. Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ, et al. A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet. 2005;365:415–6.

    CAS  PubMed  Google Scholar 

  7. Funayama M, Hasegawa K, Ohta E, Kawashima N, Komiyama M, Kowa H, et al. An LRRK2 mutation as a cause for the Parkinsonism in the original PARK8 family. Ann Neurol. 2005;57:918–21.

    Article  CAS  PubMed  Google Scholar 

  8. Ross OA, Soto-Ortolaza AI, Heckman MG, Aasly JO, Abahuni N, Annesi G, et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: a case-control study. Lancet Neurol. 2011;10:898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linhart R, Wong SA, Cao J, Tran M, Huynh A, Ardrey C, et al. Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson’s disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2). Mol Neurodegener. 2014;9:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Correia Guedes L, Ferreira JJ, Rosa MM, Coelho M, Bonifati V, Sampaio C. Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord. 2010;16:237–42.

    Article  CAS  PubMed  Google Scholar 

  11. Tan EK, Shen H, Tan LC, Farrer M, Yew K, Chua E, et al. The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson’s disease patients. Neurosci Lett. 2005;384:327–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cho JW, Kim SY, Park SS, Kim HJ, Ahn TB, Kim JM, et al. The G2019S LRRK2 mutation is rare in Korean patients with Parkinson’s disease. Can J Neurol Sci (Le J Can des Sci Neurol). 2007;34:53–5.

    Article  Google Scholar 

  13. Kishore A, Ashok Kumar Sreelatha A, Sturm M, von-Zweydorf F, Pihlstrom L, Raimondi F, et al. Understanding the role of genetic variability in LRRK2 in Indian population. Mov Disord. 2019;34:496–505.

    Article  CAS  PubMed  Google Scholar 

  14. Lewis PA, Greggio E, Beilina A, Jain S, Baker A, Cookson MR. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res Commun. 2007;357:668–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MPM, Plun-Favreau H, et al. Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta. 2013;1833:2900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008;314:2055–65.

    Article  CAS  PubMed  Google Scholar 

  17. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 2008;7:583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalia LV, Lang AE, Hazrati LN, Fujioka S, Wszolek ZK, Dickson DW, et al. Clinical correlations with Lewy body pathology in LRRK2-related Parkinson disease. JAMA Neurol. 2015;72:100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Takanashi M, Funayama M, Matsuura E, Yoshino H, Li Y, Tsuyama S, et al. Isolated nigral degeneration without pathological protein aggregation in autopsied brains with LRRK2 p.R1441H homozygous and heterozygous mutations. Acta Neuropathol Commun. 2018;6:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaig C, Marti MJ, Ezquerra M, Rey MJ, Cardozo A, Tolosa E. G2019S LRRK2 mutation causing Parkinson’s disease without Lewy bodies. J Neurol Neurosurg Psychiatry. 2007;78:626–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol. 2006;59:315–22.

    Article  CAS  PubMed  Google Scholar 

  22. Hasegawa K, Stoessl AJ, Yokoyama T, Kowa H, Wszolek ZK, Yagishita S. Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord. 2009;15:300–6.

    Article  PubMed  Google Scholar 

  23. Marti-Masso JF, Ruiz-Martinez J, Bolano MJ, Ruiz I, Gorostidi A, Moreno F, et al. Neuropathology of Parkinson’s disease with the R1441G mutation in LRRK2. Mov Disord. 2009;24:1998–2001.

    Article  PubMed  Google Scholar 

  24. Hatano T, Funayama M, Kubo SI, Mata IF, Oji Y, Mori A, et al. Identification of a Japanese family with LRRK2 p.R1441G-related Parkinson’s disease. Neurobiol Aging 2014;35:2656.e17–23.

    Article  CAS  Google Scholar 

  25. Tomiyama H, Li Y, Funayama M, Hasegawa K, Yoshino H, Kubo S, et al. Clinicogenetic study of mutations in LRRK2 exon 41 in Parkinson’s disease patients from 18 countries. Mov Disord. 2006;21:1102–8.

    Article  PubMed  Google Scholar 

  26. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mata IF, Cosentino C, Marca V, Torres L, Mazzetti P, Ortega O, et al. LRRK2 mutations in patients with Parkinson’s disease from Peru and Uruguay. Parkinsonism Relat Disord. 2009;15:370–3.

    Article  PubMed  Google Scholar 

  29. Ellard S, Baple EL, Owens M, Eccles DM, Abbs S, Deans ZC, et al. ACGS best practice guidelines for variant classification 2017. Association for Clinical Genetic Science. http://www.acgs.uk.com/media/1059605/uk_practice_guidelines_for_variant_classification_2017_24_05_17.pdf. 2017.

  30. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  PubMed  Google Scholar 

  32. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 2010;7:575–6.

    Article  CAS  PubMed  Google Scholar 

  33. Silk M, Petrovski S, Ascher DB. MTR-Viewer: identifying regions within genes under purifying selection. Nucleic Acids Res. 2019;47:W121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pérez-Palma E, May P, Iqbal S, Niestroj L-M, Du J, Heyne HO, et al. Identification of pathogenic variant enriched regions across genes and gene families. Genome Res. 2020;30:62–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tadaka S, Saigusa D, Motoike IN, Inoue J, Aoki Y, Shirota M, et al. jMorp: Japanese multi omics reference panel. Nucleic Acids Res. 2018;46:D551–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, et al. Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord. 2009;24:1811–9.

    Article  PubMed  Google Scholar 

  39. Farrer MJ, Stone JT, Lin CH, Dachsel JC, Hulihan MM, Haugarvoll K, et al. Lrrk2 G2385R is an ancestral risk factor for Parkinson’s disease in Asia. Parkinsonism Relat Disord. 2007;13:89–92.

    Article  PubMed  Google Scholar 

  40. Takeshige H, Nakayama S, Nishioka K, Li Y, Motoi Y, Hattori N. Marked reduction in the striatal dopamine transporter uptake during the early stage of motor symptoms in patients with the MAPT N279K mutation. Intern Med. 2018;57:3015–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang JR, Jin H, Li K, Mao CJ, Yang YP, Wang F, et al. Genetic analysis of LRRK2 in Parkinson’s disease in Han Chinese population. Neurobiol Aging. 2018;72:187.e5–10.

    Article  CAS  Google Scholar 

  42. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol. 2006;59:298–309.

    Article  CAS  PubMed  Google Scholar 

  43. Hentati F, Trinh J, Thompson C, Nosova E, Farrer MJ, Aasly JO. LRRK2 Parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology. 2014;83:568–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Saunders-Pullman R, Mirelman A, Alcalay RN, Wang C, Ortega RA, Raymond D, et al. Progression in the LRRK2-associated Parkinson disease population. JAMA Neurol. 2018;75:312–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lesage S, Patin E, Condroyer C, Leutenegger AL, Lohmann E, Giladi N, et al. Parkinson’s disease-related LRRK2 G2019S mutation results from independent mutational events in humans. Hum Mol Genet. 2010;19:1998–2004.

    Article  CAS  PubMed  Google Scholar 

  46. Oeppen J, Vaupel JW. Broken limits to life expectancy. Science 2002;296:1029–31.

    Article  CAS  PubMed  Google Scholar 

  47. Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with Parkinsonism: review of the literature. Mov Disord. 2017;32:1504–23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Trinh J, Gustavsson EK, Vilarino-Guell C, Bortnick S, Latourelle J, McKenzie MB, et al. DNM3 and genetic modifiers of age of onset in LRRK2 Gly2019Ser Parkinsonism: a genome-wide linkage and association study. Lancet Neurol. 2016;15:1248–56.

    Article  CAS  PubMed  Google Scholar 

  49. Islam MS, Moore DJ. Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochem Soc Trans. 2017;45:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers, 16K09678 (to KN), 16K09700 (to YL), 16K09676 (to MF), 15H04842 (to NH), and the Canada Research Chairs program (AJS). We are very grateful for these grants: AMED-CREST (Japanese Association of Medical Research and Development) (NH), Practical Research Project for Rare/Intractable Diseases from AMED; 15ek0109029s0202 to NH. This work was carried out (in part) at the Intractable Disease Research Center, Juntendo University Graduate School of Medicine. The study was partly supported by a research grant from Biogen Japan Ltd (KN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenya Nishioka or Nobutaka Hattori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ikeda, A., Yoshino, H. et al. Clinical characterization of patients with leucine-rich repeat kinase 2 genetic variants in Japan. J Hum Genet 65, 771–781 (2020). https://doi.org/10.1038/s10038-020-0772-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0772-4

This article is cited by

Search

Quick links