Skip to main content
Log in

Trapping Elastic Waves by a Semi-Infinite Cylinder with Partly Fixed Surface

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the three-dimensional mixed boundary value problem in elasticity about time harmonic oscillations of a semi-infinite anisotropic cylinder. We show that for certain position and shape of the clamping zone of the surface the elastic wave is trapped; i.e., the problem admits a nontrivial solution with exponential decay at infinity or, conversely, the absence of the trapped wave is guaranteed on all frequencies. We state some open questions that concern similar spectral problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lekhnitskij S. G., Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow (1981).

    Google Scholar 

  2. Ladyzhenskaya O. A., The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc. (1985).

    Book  Google Scholar 

  3. Fichera G., Existence Theorems in Elasticity, Springer, Berlin (1972).

    Google Scholar 

  4. Birman M. Sh. and Solomyak M. Z., Spectral Theory of Self-Adjoint Operators in Hilbert Space [Russian], Leningrad. Univ., Leningrad (1980).

    Google Scholar 

  5. Nazarov S. A., “Elastic waves trapped by a homogeneous anisotropic semicylinder,” Sb. Math., vol. 204, no. 11, 1639–1670 (2013).

    Article  MathSciNet  Google Scholar 

  6. Rellich F., “Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebiete,” Jahresber. Dtsch. Math.-Ver., Bd 53, Heft 1, 57–65 (1943).

    MathSciNet  MATH  Google Scholar 

  7. Nazarov S. A., “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains,” in: Sobolev Spaces in Mathematics. Vol. II (V. Maz’ya, ed.). Intern. Math. Ser., Springer-Verlag, New York, 2008, vol. 9, 261–309.

    Google Scholar 

  8. Nazarov S. A. and Plamenevsky B. A., Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin and New York (1994).

    Book  Google Scholar 

  9. Nazarov S. A., “A crack at the juncture of anisotropic bodies: The stress singularities and invariant integrals,” J. Appl. Math. Mech., vol. 62, no. 3, 252–261 (1998).

    Article  Google Scholar 

  10. Nazarov S. A., “A crack at the interface of anisotropic bodies. Singularities of elastic fields and fracture criteria in the contact of edges,” J. Appl. Math. Mech., vol. 69, no. 3, 473–483 (2005).

    Article  MathSciNet  Google Scholar 

  11. Leis R., Initial Boundary Value Problems of Mathematical Physics, B. G. Teubner, Stuttgart (1986).

    Book  Google Scholar 

  12. Nazarov S. A., “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes,” Russian Math. Surveys, vol. 54, no. 5, 947–1014 (1999).

    Article  MathSciNet  Google Scholar 

  13. Kondrat’ev V. A. and Oleinik O. A., “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities,” Russian Math. Surveys, vol. 43, no. 5, 65–119 (1988).

    Article  MathSciNet  Google Scholar 

  14. Mikhlin S. G., Variational Methods in Mathematical Physics, A Pergamon Press Book The Macmillan Co., New York (1964).

    MATH  Google Scholar 

  15. Van Dyke M., Perturbation Methods in Fluid Mechanics, Academic Press, New York and London (1964).

    MATH  Google Scholar 

  16. Il’in A. M., Matching Asymptotic Expansions for Solutions of Boundary Value Problems [Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  17. Maz’ya V., Nazarov S., and Plamenevskij B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhöauser-Verlag, Basel (2000).

    Book  Google Scholar 

  18. Mazya V. G. and Plamenevskii B. A., “On coefficients in asymptotic expansions of solutions to elliptic boundary value problems in domains with conical points,” Math. Nachr., vol. 76, 29–60 (1977).

    Article  MathSciNet  Google Scholar 

  19. Kondratiev V. A., “The smoothness of the solution of the Dirichlet problem for second order elliptic equations in a piecewise smooth domain,” Differ. Uravn., vol. 6, no. 10, 1831–1843 (1970).

    MathSciNet  Google Scholar 

  20. Mazya V. G. and Plamenevskii B. A., “On the ellipticity of boundary value problems in domains with piecewise-smooth boundary,” in: Proceedings of the Symposium of the Mechanics of Continuous Media and Related Problems of Analysis. Vol. 1 [Russian], Metsniereba, Tbilisi, 1973, 171–181.

    Google Scholar 

  21. Langer S., Nazarov S. A., and Shpekovius-Noigebauer M., “Affine transformations of three-dimensional anisotropic media, and explicit formulas for fundamental matrices,” J. Appl. Mech. Tech. Phys., vol. 47, no. 2, 229–235 (2006).

    Article  MathSciNet  Google Scholar 

  22. Jones D. S., “The eigenvalues of ▽2u + λu = 0 when the boundary conditions are given on semi-infinite domains,” Proc. Cambridge Phil. Soc., vol. 49, 668–684 (1953).

    Article  MathSciNet  Google Scholar 

  23. Nazarov S. A., “The Mandelstam energy radiation conditions and the Umov-Poynting vector in elastic waveguides,” J. Math. Sci., vol. 195, 676–729 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Russian Text © The Author(s), 2020, published in Sibirskii Matematicheskii Zhurnal, 2020, Vol. 61, No. 1, pp. 160–174.

The author was supported by the Russian Science Foundation (Grant 17-11-01003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Trapping Elastic Waves by a Semi-Infinite Cylinder with Partly Fixed Surface. Sib Math J 61, 127–138 (2020). https://doi.org/10.1134/S0037446620010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620010115

Keywords

Navigation