Skip to main content
Log in

Convergence to Stationary States and Energy Current for Infinite Harmonic Crystals

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a d-dimensional harmonic crystal, d ⩾ 1, and study the Cauchy problem with random initial data. The distribution μt of the solution at time t ∈ ℝ is studied. We prove the convergence of correlation functions of the measures μt to a limit for large times. The explicit formulas for the limiting correlation functions and for the energy current density (in the mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of μt to a limit measure as t → ∞. We apply these results to the case when initially some infinite “parts” of the crystal have Gibbs distributions with different temperatures. In particular, we find stationary states in which there is a constant nonzero energy current flowing through the crystal. We also study the initial boundary value problem for the harmonic crystal in the half-space with zero boundary condition and obtain similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Boldrighini, A. Pellegrinotti, and L. Triolo, “Convergence to Stationary States for Infinite Harmonic Systems,” J. Stat. Phys. 30(1), 123–155 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, “Fourier Law: a Challenge to Theorists,” in Mathematical Physics 2000 (A. Fokas et al. (Eds), Imperial College Press, London, 2000), pp. 128–150.

    Chapter  Google Scholar 

  3. F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, “Fourier’s Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs,” J. Statist. Phys. 116(12–4), 783–813 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Casher and J. L. Lebowitz, “Heat Flow in Regular and Disordered Harmonic Chains,” J. Math. Phys. 12(8), 1701–1711 (1971).

    Article  ADS  Google Scholar 

  5. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory (Springer, New York, 1981).

    MATH  Google Scholar 

  6. R. L. Dobrushin and Yu. M. Sukhov, “On the Problem of the Mathematical Foundation of the Gibbs Postulate in Classical Statistical Mechanics,” in Mathematical Problems in Theoretical Physics, Lecture Notes in Physics (Springer-Verlag, Berlin, 1978), Vol. 80, pp. 325–340.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. V. Dudnikova, A. I. Komech, and H. Spohn, “On the Convergence to Statistical Equilibrium for Harmonic Crystals,” J. Math. Phys. 44(6), 2596–2620 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. T. V. Dudnikova, A. I. Komech, and N. J. Mauser, “On Two-Temperature Problem for Harmonic Crystals,” J. Statist. Phys. 114(32–4), 1035–1083 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. V. Dudnikova and A. I. Komech, “On a Two-Temperature Problem for the Klein Gordon Equation,” Teor. Veroyattist. i Primenen. 50, 675–710 (2005) (English transl. in Theory Probab. Appl. 50(4), 5822–611 (2006)).

    Article  MathSciNet  Google Scholar 

  10. T. V. Dudnikova, “On the Asymptotical Normality of Statistical Solutions for Harmonic Crystals in Half-Space,” Russian J. Math. Phys. 15(4), 460–472 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. T. V. Dudnikova, “On Convergence to Equilibrium for One-Dimensional Chain of Harmonic Oscillators on the Half-Line,” J. Math. Phys. 58(4), 043301 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, “nonequilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures,” Comm. Math. Phys. 201(3), 657–697 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, “Entropy Production in Nonlinear, Thermally Driven Hamiltonian Systems,” J. Statist. Phys. 95(12–2), 305–331 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. Fidaleo and C. Liverani, “Ergodic Properties for a Quantum Nonlinear Dynamics,” J. Statist. Phys. 97(52–6), 957–1009 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. Jakšić and C.-A. Pillet, “Ergodic Properties of Classical Dissipative Systems. I,” Acta Math. 181(2), 245–282 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables (Ed. by J.F.C. Kingman, Wolters Noordhoff, Groningen, 1971).

  17. Y. Katznelson, An Introduction in Harmonic Analysis, 3rd edition (Cambridge University Press, 2004).

    Book  MATH  Google Scholar 

  18. O. E. Lanford III and J. L. Lebowitz, “Time Evolution and Ergodic Properties of Harmonic Systems,” in Dynamical Systems, Theory and Applications. Lecture Notes in Physics (Springer-Verlag, Berlin, 1975), Vol. 38, pp. 144–177.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. Lepri, R. Livi, and A. Politi, “Thermal Conduction in Classical Low-Dimensional Lattices,” Phys. Rep. 377(1), 1–80 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Lepri (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer (Lecture Notes in Physics, Springer, 2016), Vol. 921.

    Book  Google Scholar 

  21. H. Nakazawa, “On the Lattice Thermal Conduction,” Supplement of the Progress of Theor. Phys. 45, 231–262 (1970).

    Article  ADS  Google Scholar 

  22. L. Rey-Bellet and L. E. Thomas, “Exponential Convergence to nonequilibrium Stationary States in Classical Statistical Mechanics,” Comm. Math. Phys. 225(2), 305–329 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Z. Rieder, J. L. Lebowitz, and E. Lieb, “Properties of a Harmonic Crystal in a Stationary Nonequilibrium State,” J. Math. Phys. 8(5), 1073–1078 (1967).

    Article  ADS  Google Scholar 

  24. H. Spohn and J. L. Lebowitz, “Stationary nonequilibrium States of Infinite Harmonic Systems,” Comm. Math. Phys. 54(2), 97–120 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Spohn, Large Scale Dynamics of Interacting Particles (Texts and Monographs in Physics, Springer-Verlag, Heidelberg, 1991).

    Book  MATH  Google Scholar 

  26. M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics (Kluwer Academic, New York, 1988).

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This work was done with the financial support from the Russian Science Foundation (Grant no. 19–71–30004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Dudnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikova, T.V. Convergence to Stationary States and Energy Current for Infinite Harmonic Crystals. Russ. J. Math. Phys. 26, 428–453 (2019). https://doi.org/10.1134/S1061920819040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920819040034

Navigation