Skip to main content
Log in

Density Bounds for Solutions to Differential Equations Driven by Gaussian Rough Paths

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider finite-dimensional rough differential equations driven by centered Gaussian processes. Combining Malliavin calculus, rough paths techniques and interpolation inequalities, we establish upper bounds on the density of the corresponding solution for any fixed time \(t>0\). In addition, we provide Varadhan estimates for the asymptotic behavior of the density for small noise. The emphasis is on working with general Gaussian processes with covariance function satisfying suitable abstract, checkable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As pointed out, for example, in [23] this process does not fit in the Volterra framework.

  2. We may ignore the (constant, random) zero-mode in the series since we are only interested in properties of the increments of the process.

References

  1. Bally, V., Pardoux, E.: Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9(1), 27–64 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Baudoin, F., Hairer, M.: A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Relat. Fields 139(3–4), 373–395 (2007)

    MATH  Google Scholar 

  3. Baudoin, F., Nualart, E., Ouyang, C., Tindel, S.: On probability laws of solutions to differential systems driven by fractional Brownian motion. Ann. Probab. 44(4), 2554–25901 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Baudoin, F., Ouyang, C.: Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stoch. Proc. Appl. 121(4), 759–792 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Baudoin, F., Ouyang, C., Tindel, S.: Upper bounds for the density of solutions of stochastic differential equations driven by fractional Brownian motions. Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 111–135 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bell, D., Mohammed, S.-E.: The Malliavin calculus and stochastic delay equations. J. Funct. Anal. 99(1), 75–99 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Baudoin, F., Ouyang, C., Zhang, X.: Varadhan estimates for RDEs driven by fractional Brownian motions. Stoch. Process. Appl. 125(2), 634–652 (2015)

    MATH  Google Scholar 

  8. Cass, T., Friz, P.: Densities for rough differential equations under Hörmander’s condition. Ann. Math. 171, 2115–2141 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cass, T., Friz, P., Victoir, N.: Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Am. Math. Soc. 361(6), 3359–3371 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Cass, T., Hairer, M., Litterer, C., Tindel, S.: Smoothness of the density for solutions to Gaussian rough differential equations. Ann. Probab. 43(1), 188–239 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Cass, T., Litterer, C., Lyons, T.: Integrability and tail estimates for Gaussian rough differential equations. Ann. Probab 41(4), 3026–3050 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Friz, P.K., Gess, B., Gulisashvili, A., Riedel, S.: Jain–Monrad criterion for rough paths. Ann. Probab. 44(1), 684–738 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Friz, P.K., Riedel, S.: Integrability of (non-)linear rough differential equations and integrals. Stoch. Process. Appl. 31(2), 336–358 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Ferrante, M., Rovira, C., Sanz-Solé, M.: Stochastic delay equations with hereditary drift: estimates of the density. J. Funct. Anal. 177(1), 138–177 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Friz, P.K., Hairer, M.: A Course on Rough Paths: With an Introduction to Regularity Structures, Universitext. Springer, Berlin (2014)

    MATH  Google Scholar 

  16. Friz, P.K., Victoir, N.: Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46(2), 369–413 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Friz, P.K., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Gubinelli, M.: Controlling rough paths. J. Funct. Anal. 216, 86–140 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Hairer, M.: Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33(2), 703–758 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Stochastic Models (Mexico City, 2002), Contemporary Mathematics, vol. 336, pp. 195–201. American Mathematical Society, Providence (2003)

  21. Inahama, Y.: Malliavin differentiability of solutions of rough differential equations. J. Funct. Anal. 267(5), 1566–1584 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Inahama, Y.: Short time kernel asymptotics for rough differential equation driven by fractional Brownian motion. Eletron. J. Probab. 21(34), 1–29 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Kruk, I., Russo, F., Tudor, C.A.: Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249(1), 92–142 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Léandre, R.: Integration dans la fibre associée a une diffusion dégénérée. Probab. Theory Relat. Fields 76(3), 341–358 (1987)

    MATH  Google Scholar 

  25. Lou, S., Ouyang, C.: Local times of stochastic differential equations driven by fractional Brownian motions. Stoch. Process. Appl. 127(11), 3643–3660 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. In: Proceedings of the International Symposium on Stochastic Differential Equations, pp. 195–263. Wiley, Hoboken (1978)

  27. Marcus, M.B., Rosen, J.: Markov Processes, Gaussian Processes, and Local Times. Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  28. Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Nualart, D., Quer-Sardanyons, L.: Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27(3), 281–299 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Rovira, C., Sanz-Solé, M.: The law of the solution to a nonlinear hyperbolic SPDE. J. Theor. Probab. 9(4), 863–901 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Russo, F., Tudor, C.A.: On bifractional Brownian motion. Stoch. Process. Appl. 116(5), 830–856 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Towghi, N.: Multidimensional extension of L C Young’s inequality. J. Inequal. Pure Appl. Math. 3(2), 13 (2002). Article 22 (electronic)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his/her very careful reading of the first version of this paper and for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Ouyang’ research is supported in part by Simons Grant #355480. S. Tindel is supported in part by NSF Grant DMS 0907326.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gess, B., Ouyang, C. & Tindel, S. Density Bounds for Solutions to Differential Equations Driven by Gaussian Rough Paths. J Theor Probab 33, 611–648 (2020). https://doi.org/10.1007/s10959-019-00967-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00967-0

Keywords

Mathematics Subject Classification (2010)

Navigation