Skip to main content
Log in

Transgressions of the Euler class and Eisenstein cohomology of GLN(Z)

  • Special Feature: The Takagi Lectures
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

These notes were written to be distributed to the audience of the first author’s Takagi Lectures delivered June 23, 2018. These are based on a work-in-progress that is part of a collaborative project that also involves Akshay Venkatesh.

In this work-in-progress we give a new construction of some Eisenstein classes for GLN (Z) that were first considered by Nori [41] and Sczech [44]. The starting point of this construction is a theorem of Sullivan on the vanishing of the Euler class of SLN (Z) vector bundles and the explicit transgression of this Euler class by Bismut and Cheeger. Their proof indeed produces a universal form that can be thought of as a kernel for a regularized theta lift for the reductive dual pair (GLN, GL1). This suggests looking to reductive dual pairs (GLN, GLk) with k ≥ 1 for possible generalizations of the Eisenstein cocycle. This leads to fascinating lifts that relate the geometry/topology world of real arithmetic locally symmetric spaces to the arithmetic world of modular forms.

In these notes we do not deal with the most general cases and put a lot of emphasis on various examples that are often classical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.F. Atiyah, H. Donnelly and I.M. Singer, Eta invariants, signature defects of cusps, and values of L-functions, Ann. of Math. (2), 118 (1983) 131–177.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.A. Beĭlinson, Higher regulators and values of L-functions, In: Current Problems in Mathematics, 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238.

    Google Scholar 

  3. A.A. Beĭlinson, G. Kings and A. Levin, Topological polylogarithms and p-adic interpolation of L-values of totally real fields, Math. Ann., 371 (2018) 1449–1495.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.A. Beĭlinson and A. Levin, The elliptic polylogarithm, In: Motives, Seattle, WA, 1991, Proc. Sympos. Pure Math., 55, Amer. Math. Soc., Providence, RI, 1994, pp. 123–190.

    Google Scholar 

  5. N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Text Ed., Springer-Verlag, 2004. Corrected reprint of the 1992 original.

  6. J.-M. Bismut and J. Cheeger, Remarks on the index theorem for families of Dirac operators on manifolds with boundary, In: Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991, pp. 59–83.

    Google Scholar 

  7. J.-M. Bismut and J. Cheeger, Transgressed Euler classes of SL(2n, Z) vector bundles, adiabatic limits of eta invariants and special values of L-functions, Ann. Sci. École Norm. Sup. (4), 25 (1992) 335–391.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-M. Bismut, H. Gillet and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott—Chern forms and analytic torsion, Comm. Math. Phys., 115 (1988) 49–78.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Blasius, On the critical values of Hecke L-series, Ann. of Math. (2), 124 (1986) 23–63.

    Article  MathSciNet  MATH  Google Scholar 

  10. L.A. Borisov and P.E. Gunnells, Toric modular forms and nonvanishing of L-functions, J. Reine Angew. Math., 539 (2001) 149–165.

    MathSciNet  MATH  Google Scholar 

  11. L.A. Borisov and P.E. Gunnells, Toric varieties and modular forms, Invent. Math., 144 (2001) 297–325.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Bott and L.W. Tu, Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer-Verlag, 1982.

  13. F. Brunault, Beilinson—Kato elements in K2 of modular curves, Acta Arith., 134 (2008) 283–298.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent. Math., 51 (1979) 29–59.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Charollois and S. Dasgupta, Integral Eisenstein cocycles on GLn, I: Sczech’s cocycle and p-adic L-functions of totally real fields, Camb. J. Math., 2 (2014) 49–90.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Charollois, S. Dasgupta and M. Greenberg, Integral Eisenstein cocycles on GLn, II: Shintani’s method, Comment. Math. Helv., 90 (2015) 435–477.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Charollois and R. Sczech, Elliptic functions according to Eisenstein and Kronecker: an update, Eur. Math. Soc. Newsl., 101 (2016) 8–14.

    MathSciNet  MATH  Google Scholar 

  18. S.-S. Chern, A simple intrinsic proof of the Gauss—Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2), 45 (1944) 747–752.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Colmez, Algébricité de valeurs spéciales de fonctions L, Invent. Math., 95 (1989) 161–205.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.M. Damerell, L-functions of elliptic curves with complex multiplication. I, Acta Arith., 17 (1970), 287–301.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Deligne, Valeurs de fonctions L et périodes d’intégrales. With an appendix by N. Koblitz and A. Ogus, In: Automorphic Forms, Representations and L-functions, Oregon State Univ., Corvallis, OR, 1977, Proc. Sympos. Pure Math., 33, Part 2, Amer. Math. Soc., Providence, RI, 1979, pp. 313–346.

    Google Scholar 

  22. P. Deligne and K.A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980) 227–286.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Faltings, Arithmetic Eisenstein classes on the Siegel space: some computations, In: Number Fields and Function Fields—Two Parallel Worlds, Progr. Math., 239, Birkhäuser Boston, Boston, MA, 2005, pp. 133–166.

    Chapter  Google Scholar 

  24. J. Flórez, C. Karabulut and T.A. Wong, Eisenstein cocycles over imaginary quadratic fields and special values of L-functions, J. Number Theory, 204 (2019) 497–531.

    Article  MathSciNet  MATH  Google Scholar 

  25. L.E. Garcia, Superconnections, theta series, and period domains, Adv. Math., 329 (2018) 555–589.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Getzler, The Thom class of Mathai and Quillen and probability theory, In: Stochastic Analysis and Applications, Lisbon, 1989, Progr. Probab., 26, Birkhäuser Boston, Boston, MA, 1991, pp. 111–122.

    Google Scholar 

  27. A.B. Goncharov, Regulators, In: Handbook of K-Theory. Vol. 1, 2, Springer-Verlag, 2005, pp. 295–349.

  28. P. Graf, Polylogarithms for GL2 over totally real fields, preprint, arXiv:1604.04209.

  29. G. Harder, Some results on the Eisenstein cohomology of arithmetic subgroups of GLn, In: Cohomology of Arithmetic Groups and Automorphic Forms, Luminy—Marseille, 1989, Lecture Notes in Math., 1447, Springer-Verlag, 1990, pp. 85–153.

  30. G. Harder and N. Schappacher, Special values of Hecke L-functions and abelian integrals, In: Workshop Bonn 1984, Bonn, 1984, Lecture Notes in Math., 1111, Springer-Verlag, 1985, pp. 17–49.

  31. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. Sixth ed., Revised by D.R. Heath-Brown and J.H. Silverman. With a foreword by A. Wiles, Oxford Univ. Press, Oxford, 2008.

    MATH  Google Scholar 

  32. R. Howe, θ-series and invariant theory, In: Automorphic Forms, Representations and L-Functions, Oregon State Univ., Corvallis, OR, 1977, Proc. Sympos. Pure Math., 33, Part 1, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.

  33. T. Ishii and T. Oda, A short history on investigation of the special values of zeta and L-functions of totally real number fields, In: Automorphic Forms and Zeta Functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 198–233.

    Chapter  MATH  Google Scholar 

  34. H. Ito, A function on the upper half space which is analogous to the imaginary part of log η(z), J. Reine Angew. Math., 373 (1987) 148–165.

    MathSciNet  MATH  Google Scholar 

  35. K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, In: Coho-mologies p-adiques et applications arithmétiques. III, Astérisque, 295, Soc. Math. France, Paris, 2004, pp. 117–290.

  36. H. Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann., 145 (1962), 265–272.

    Article  MathSciNet  MATH  Google Scholar 

  37. S.S. Kudla, Seesaw dual reductive pairs, In: Automorphic Forms of Several Variables, Katata, 1983, Progr. Math., 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244–268.

  38. S.S. Kudla and J.J. Millson, Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Inst. Hautes Études Sci. Publ. Math., 71 (1990) 121–172.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology, 25 (1986) 85–110.

    MATH  Google Scholar 

  40. W. Müller, Signature defects of cusps of Hilbert modular varieties and values of L-series at s = 1, J. Differential Geom., 20 (1984) 55–119.

    Article  MathSciNet  MATH  Google Scholar 

  41. M.V. Nori, Some Eisenstein cohomology classes for the integral unimodular group, In: Proceedings of the International Congress of Mathematicians. Vol. 1, 2, Zürich, 1994, Birkhäuser, Basel, 1995, pp. 690–696.

    Google Scholar 

  42. R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math., 76 (1984) 523–551.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Sczech, Eisenstein cocycles for GL2Q and values of L-functions in real quadratic fields, Comment. Math. Helv., 67 (1992) 363–382.

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Sczech, Eisenstein group cocycles for GLn and values of L-functions, Invent. Math., 113 (1993) 581–616.

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976) 393–417.

    MathSciNet  MATH  Google Scholar 

  46. C.L. Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2), 38 (1937), 212–291.

    Article  MathSciNet  MATH  Google Scholar 

  47. C.L. Siegel, Advanced Analytic Number Theory. Second ed., Tata Inst. Fundam. Res. Stud. Math., 9, Tata Inst. Fundam. Res., Bombay, 1980.

    Google Scholar 

  48. C.L. Siegel, Gesammelte Abhandlungen. IV, (eds. K. Chandrasekharan and H. Maaß), Springer Collect. Works Math., Springer-Verlag, 2015. Reprint of the 1979 ed., Original publication incorrectly given as 1966 ed. on the title page.

  49. D. Sullivan, La classe d’Euler réelle d’un fibré vectoriel à groupe structural SLn (Z) est nulle, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975) Aii, A17–A18.

    Google Scholar 

  50. A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Classics Math., Springer-Verlag, 1999. Reprint of the 1976 original.

  51. F. Wielonsky, Séries d’Eisenstein, intégrales toroïdales et une formule de Hecke, Enseign. Math. (2), 31 (1985), 93–135.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

N.B. would like to thank the Mathematical Society of Japan, the local organisers, and especially Professor Kobayashi, for their invitation and their kind hospitality in Kyoto. We all thank our collaborator Akshay Venkatesh as well as Javier Fresan for their comments and corrections on these notes. L.G. wishes to thank IHES for providing excellent conditions for research while this work was done. L.G. also acknowledges financial support from the ERC AAMOT Advanced Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Bergeron, Pierre Charollois or Luis E. Garcia.

Additional information

Communicated by: Toshiyuki Kobayashi

This article is based on the 21st Takagi Lectures that the first author delivered at Research Institute for Mathematical Sciences, Kyoto University on June 23, 2018.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, N., Charollois, P. & Garcia, L.E. Transgressions of the Euler class and Eisenstein cohomology of GLN(Z). Jpn. J. Math. 15, 311–379 (2020). https://doi.org/10.1007/s11537-019-1822-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-019-1822-6

Keywords and phrases

Mathematics Subject Classification (2020)

Navigation