Skip to main content
Log in

Spectral Asymptotics of the Dirichlet Laplacian on a Generalized Parabolic Layer

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We perform quantitative spectral analysis of the self-adjoint Dirichlet Laplacian \({\mathsf {H}}\) on an unbounded, radially symmetric (generalized) parabolic layer \({\mathcal {P}}\subset {\mathbb {R}}^3\). It was known before that \({\mathsf {H}}\) has an infinite number of eigenvalues below the threshold of its essential spectrum. In the present paper, we find the discrete spectrum asymptotics for \({\mathsf {H}}\) by means of a consecutive reduction to the analogous asymptotic problem for an effective one-dimensional Schrödinger operator on the half-line with the potential the behaviour of which far away from the origin is determined by the geometry of the layer \({\mathcal {P}}\) at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. \(\mathop {\mathrm {dist}}\nolimits ({\varvec{x}}, E) := \inf _{{\varvec{y}}\in E}|{\varvec{x}}-{\varvec{y}}|_{{\mathbb {R}}^d}\) is the distance between a point \({\varvec{x}}\in {\mathbb {R}}^d\) and a set \(E\subset {\mathbb {R}}^d\).

References

  1. Abramowitz, M.S., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  2. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: Approximation of Schrödinger operators with \(\delta \)-interactions supported on hypersurfaces. Math. Nachr. 290, 1215–1248 (2017)

    Article  MathSciNet  Google Scholar 

  3. Behrndt, J., Exner, P., Lotoreichik, V.: Schrödinger operators with \(\delta \)-interactions supported on conical surfaces. J. Phys. A: Math. Theor. 47, 355202, 16 pp (2014)

  4. Sh, M., Birman, M., Solomjak, Z.: Spectral Theory of Self-adjoint Operators in Hilbert Spaces. Dodrecht, Holland (1987)

    Google Scholar 

  5. Borisov, D., Exner, P., Gadylshin, R., Krejčiřík, D.: Bound states in weakly deformed strips and layers. Ann. Henri Poincaré 2, 553–572 (2001)

    Article  MathSciNet  Google Scholar 

  6. Briet, P., Kovařík, H., Raikov, G., Soccorsi, E.: Eigenvalue asymptotics in a twisted waveguide. Commun. Partial Differ. Equ. 34, 818–836 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bruneau, V., Pankrashkin, K., Popoff, N.: Eigenvalue counting function for Robin Laplacians on conical domains. J. Geom. Anal. 28, 123–151 (2018)

    Article  MathSciNet  Google Scholar 

  8. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc, Englewood Cliffs, NJ (1976)

    MATH  Google Scholar 

  9. Carron, G., Exner, P., Krejčiřík, D.: Topologically nontrivial quantum layers. J. Math. Phys. 45, 774–784 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)

    Book  Google Scholar 

  11. Dauge, M., Lafranche, Y., Ourmières-Bonafos, T.: Dirichlet spectrum of the Fichera layer. Integral Equ. Oper. Theory 90, 60 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dauge, M., Lafranche, Y., Raymond, N.: Quantum waveguides with corners. ESAIM Proc. 35, 14–45 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dauge, M., Ourmières-Bonafos, T., Raymond, N.: Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Commun. Pure Appl. Anal. 14, 1239–1258 (2015)

    Article  MathSciNet  Google Scholar 

  14. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  15. Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73–102 (1995)

    Article  MathSciNet  Google Scholar 

  16. Duclos, P., Exner, P., Krejčiřík, D.: Bound states in curved quantum layers. Commun. Math. Phys. 223, 13–28 (2001)

    Article  MathSciNet  Google Scholar 

  17. Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  18. Exner, P., Kondej, S.: Aharonov and Bohm versus Welsh eigenvalues. Lett. Math. Phys. 108, 2153–2167 (2018)

    Article  MathSciNet  Google Scholar 

  19. Exner, P., Kovařík, H.: Quantum Waveguides. Theoretical and Mathematical Physics. Springer, Cham (2015)

    Book  Google Scholar 

  20. Exner, P., Krejčiřík, D.: Bound states in mildly curved layers. J. Phys. A 34, 5969–5985 (2001)

    Article  MathSciNet  Google Scholar 

  21. Exner, P., Šeba, P.: Bound states in curved quantum waveguides. J. Math. Phys. 30, 2574–2580 (1989)

    Article  MathSciNet  Google Scholar 

  22. Exner, P., Tater, M.: Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A 43, 474023 (2010)

    Article  MathSciNet  Google Scholar 

  23. Kato, T.: Perturbation Theory for Linear Operators. Reprint of the 1980 Edition. Springer, Berlin (1995)

    Google Scholar 

  24. Krejčiřík, D., Lotoreichik, V., Ourmières-Bonafos, T.: Spectral transitions for Aharonov-Bohm Laplacians on conical layers. Proc. Roy. Soc. Edinb. A 149(6), 1663–1687 (2019)

    Article  MathSciNet  Google Scholar 

  25. Krejčiřík, D., Lu, Z.: Location of the essential spectrum in curved quantum layers. J. Math. Phys. 55, 083520, 13 p (2014)

  26. Lotoreichik, V., Ourmières-Bonafos, T.: On the bound states of Schrödinger operators with \(\delta \)-interactions on conical surfaces. Commun. Partial Differ. Equ. 41, 999–1028 (2016)

    Article  Google Scholar 

  27. Lin, C., Lu, Z.: Existence of bound states for layers built over hypersurfaces in \({\mathbb{R}}^{n+1}\). J. Funct. Anal. 244, 1–25 (2007)

    Article  MathSciNet  Google Scholar 

  28. Lu, Z., Rowlett, J.: On the discrete spectrum of quantum layers. J. Math. Phys. 53, 073519 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ourmières-Bonafos, T., Pankrashkin, K.: Discrete spectrum of interactions concentrated near conical surfaces. Appl. Anal. 97, 1628–1649 (2018)

    Article  MathSciNet  Google Scholar 

  30. Pankrashkin, K.: On the discrete spectrum of Robin Laplacians in conical domains. Math. Model. Nat. Phenom. 11, 100–110 (2016)

    Article  MathSciNet  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  33. Teschl, G.: Mathematical Methods in Quantum Mechanics, With Applications to Schrödinger Operators. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the grant No. 17-01706S of the Czech Science Foundation (GAČR) and by the EU project CZ.02.1.01/0.0/0.0/16_019/0000778. The authors are also grateful to the anonymous referee, whose suggestions helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Exner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. The Signed Curvature of \(\Gamma \)

Appendix A. The Signed Curvature of \(\Gamma \)

In this appendix, we analyze properties of the signed curvature \(\gamma \) of the curve \(\Gamma \) defined in (2.13). This material can be seen as an exercise in the differential geometry, however, the claims we need are scattered and not easy to find in textbooks. Recall that the curve \(\Gamma \) is parametrized by \(\overline{{\mathbb {R}}}_+\ni s \rightarrow (\phi (s),f(\phi (s)))\), where the increasing function \(\phi :\overline{{\mathbb {R}}}_+\rightarrow \overline{{\mathbb {R}}}_+\) fulfils \(\phi (0) = 0\) and satisfies the ordinary differential equation (2.11). In the remaining part of this appendix, all the functions depend on s and their derivatives are taken with respect to that variable. For the sake of brevity, the indication of the dependence on s is occasionally dropped.

First, we formulate and prove an auxiliary lemma on the second principal curvature \(\kappa _2\) of \(\Sigma \), explicitly given in (2.19).

Lemma A.1

Let \(\phi :\overline{{\mathbb {R}}}_+\rightarrow \overline{{\mathbb {R}}}_+\) be the solution of (2.11) with \(\phi (0) = 0\). Then the function

$$\begin{aligned} \overline{{\mathbb {R}}}_+ \ni p\mapsto \sup _{s\in [p,\infty )}\frac{\dot{f}(\phi (s))\dot{\phi }(s)}{\phi (s)} \end{aligned}$$

is bounded and vanishes as \(p\rightarrow \infty \).

Proof

First, we observe that the function \({\mathbb {R}}_+\ni s \mapsto \frac{\dot{f}(\phi (s))\dot{\phi }(s)}{\phi (s)}\) is \({\mathcal {C}}^\infty \)-smooth on \({\mathbb {R}}_+\). Moreover, using that \(\phi (0) = 0\), \(\dot{\phi }(0) = 1\) and the Taylor expansion \(\dot{f}(x) = \ddot{f}(0)x + o(x)\) as \(x\rightarrow 0^+\) we get

$$\begin{aligned} \lim _{s\rightarrow 0^+}\frac{\dot{f}(\phi )\dot{\phi }}{\phi }=&{} \ddot{f}(0)\,, \quad \lim _{s\rightarrow \infty }\frac{\dot{f}(\phi )\dot{\phi }}{\phi } = \lim _{s\rightarrow \infty } \frac{1}{\phi }\left( \frac{\dot{f}^2(\phi )}{1+\dot{f}^2(\phi )}\right) ^{\frac{1}{2}}= {} \lim _{s\rightarrow \infty }\frac{1}{\phi } = 0. \end{aligned}$$

The above two limits and smoothness of \(\frac{f(\phi )\dot{\phi }}{\phi }\) yield the claims. \(\square \)

Next, we prove a proposition, on the asymptotic behaviour of \(\phi \) and its derivatives up to the third, in the limit \(s\rightarrow \infty \).

Proposition A.2

The solution \(\phi :\overline{{\mathbb {R}}}_+\rightarrow \overline{{\mathbb {R}}}_+\) of (2.11) with \(\phi (0) = 0\) has the following properties.

  1. (i)

    \(\lim _{s\rightarrow \infty }s^{-\frac{1}{\alpha }} \phi = k^{-\frac{1}{\alpha }}\).

  2. (ii)

    \(\lim _{s\rightarrow \infty }s^{\frac{\alpha -1}{\alpha }} \dot{\phi }= \frac{ k^{-\frac{1}{\alpha }}}{\alpha }\).

  3. (iii)

    \(\lim _{s\rightarrow \infty }s^{\frac{2\alpha -1}{\alpha }} \ddot{\phi }= -\frac{\alpha -1}{\alpha ^2}k^{-\frac{1}{\alpha }}\).

  4. (iv)

    \(\lim _{s\rightarrow \infty }s^{\frac{3\alpha -1}{\alpha }}\dddot{\phi }= \frac{(\alpha -1)(2\alpha -1)}{\alpha ^3} k^{-\frac{1}{\alpha }}\).

Proof

Notice that we obviously have \(\lim _{s\rightarrow \infty }\phi (s) = \infty \), because the map \(\overline{{\mathbb {R}}}_+\ni s\mapsto (\phi (s), f(\phi (s))\) is a re-parametrization of the curve \(\overline{{\mathbb {R}}}_+\ni x\mapsto (x,f(x))\). The differential equation (2.11) implies that on the interval \([R,\infty )\) the following estimates hold:

$$\begin{aligned} \alpha k\phi ^{\alpha -1}\dot{\phi }\le 1 , \big (1 + \alpha k\phi ^{\alpha -1}\big )\dot{\phi }\ge 1. \end{aligned}$$

Integrating the above inequalities on the interval [Rs] we get

$$\begin{aligned} k\phi ^\alpha (s) \le s + {\mathcal {O}}(1), \phi (s) + k\phi ^\alpha (s) \ge s + {\mathcal {O}}(1), \qquad \forall \, s \ge R.\nonumber \\ \end{aligned}$$
(A.1)

Plugging the first inequality in (A.1) into the second, we obtain

$$\begin{aligned} k\phi ^\alpha (s) \ge s - \left( \frac{s}{k}\right) ^{\frac{1}{\alpha }} + {\mathcal {O}}(1), \qquad \forall \, s \ge R. \end{aligned}$$
(A.2)

Combining the first inequality in (A.1) with (A.2) and using the assumption \(\AA > 1\) we get the limit in (i). Furthermore, the limit in (ii) can be shown as follows,

$$\begin{aligned} \begin{aligned} \lim _{s\rightarrow \infty }s^{\frac{\alpha -1}{\alpha }}{\dot{\phi }}&= \lim _{s\rightarrow \infty }s^{\frac{\alpha -1}{\alpha }}\big (1+\alpha ^2 k^2 \phi ^{2\alpha -2}\big )^{-\frac{1}{2}}\\&= \lim _{s\rightarrow \infty }\left( s^{-\frac{2(\alpha -1)}{\alpha }} + \alpha ^2 k^2 s^{-\frac{2(\alpha -1)}{\alpha }} \phi ^{2\alpha -2}\right) ^{-\frac{1}{2}} \\&= \lim _{s\rightarrow \infty }\frac{1}{\alpha k s^{-\frac{\alpha -1}{\alpha }}\phi ^{\alpha -1}} = \frac{ k^{-\frac{1}{\alpha }}}{\alpha }. \end{aligned} \end{aligned}$$

The differential equation (2.11) can be alternatively written as

$$\begin{aligned} \dot{\phi }(s) = \frac{1}{\big (1+\dot{f}^2(\phi (s))\big )^{\frac{1}{2}}}. \end{aligned}$$
(A.3)

Differentiating the left and right hand sides of Eq. (A.3), we express \(\ddot{\phi }\) as follows,

$$\begin{aligned} \ddot{\phi }= -\frac{\dot{f}(\phi ) \ddot{f}(\phi ) \dot{\phi }}{(1+\dot{f}^2(\phi ))^{\frac{3}{2}}} = - \frac{\dot{f}(\phi ) \ddot{f}(\phi )}{(1+\dot{f}^2(\phi ))^2}. \end{aligned}$$
(A.4)

Hence, on the interval \([R,\infty )\), we have

$$\begin{aligned} \ddot{\phi }= - \frac{\alpha ^2k^2(\alpha -1)\phi ^{2\alpha -3}}{ \big (1+\alpha ^2 k^2 \phi ^{2\alpha -2}\big )^2 }. \end{aligned}$$

Eventually, using (i) we get

$$\begin{aligned} \lim _{s\rightarrow \infty }s^{\frac{2\alpha -1}{\alpha }}\ddot{\phi }= - \lim _{s\rightarrow \infty }\frac{\alpha -1}{\alpha ^2 k^2 s^{-\frac{2\alpha -1}{\alpha }} \phi ^{2\alpha -1}} = \frac{\alpha -1}{\alpha ^2 k^2 k^{-\frac{2\alpha -1}{\alpha }}} = -\frac{\alpha -1}{\alpha ^2}k^{-\frac{1}{\alpha }}, \end{aligned}$$

and in this way the limit in (iii) is also obtained.

Differentiating the left and the right hand sides of (A.4), we express \(\dddot{\phi }\) as follows,

$$\begin{aligned} \begin{aligned} \dddot{\phi }&= - \frac{(\ddot{f}^2(\phi ) + \dot{f}(\phi )\dddot{f}(\phi )) (1+\dot{f}^2(\phi ))\dot{\phi }- 4\dot{f}^2(\phi )\ddot{f}^2(\phi )\dot{\phi }}{(1+\dot{f}^2(\phi ))^3} \\&= \frac{3\dot{f}^2(\phi )\ddot{f}^2(\phi ) -\ddot{f}^2(\phi ) - \dot{f}(\phi )\dddot{f}(\phi ) - \dot{f}^3(\phi )\dddot{f}(\phi )}{(1+\dot{f}^2(\phi ))^{\frac{7}{2}}}. \end{aligned} \end{aligned}$$

The latter yields that on the interval \([R,\infty )\)

$$\begin{aligned} \begin{aligned} \dddot{\phi }&= \frac{ 3\alpha ^4(\alpha -1)^2 k^4\phi ^{4\alpha -6} - \alpha ^2(\alpha -1)(2\alpha -3)k^2\phi ^{2\alpha -4} - \alpha ^4(\alpha -1)(\alpha -2)k^4\phi ^{4\alpha -6} }{\big (1+ \alpha ^2 k^2\phi ^{2\alpha -2}\big )^{\frac{7}{2}}}\\&= \frac{ \alpha ^4(\alpha -1) (2\alpha -1)k^4\phi ^{4\alpha -6} - \alpha ^2(\alpha -1)(2\alpha -3)k^2\phi ^{2\alpha -4} }{\big (1+ \alpha ^2 k^2\phi ^{2\alpha -2}\big )^{\frac{7}{2}}}. \end{aligned} \end{aligned}$$

Again using (i) we obtain

$$\begin{aligned} \begin{aligned}&\lim _{s\rightarrow \infty }s^{\frac{3\alpha -1}{\alpha }}\dddot{\phi }\\&= \lim _{s\rightarrow \infty }s^{\frac{3\alpha -1}{\alpha }} \frac{ \alpha ^4(\alpha -1)(2\alpha -1)k^4\phi ^{4\alpha -6} - \alpha ^2(\alpha -1)(2\alpha -3)k^2\phi ^{2\alpha -4} }{\big (1+ \alpha ^2 k^2\phi ^{2\alpha -2}\big )^{\frac{7}{2}}}\\&= \lim _{s\rightarrow \infty }s^{\frac{3\alpha -1}{\alpha }} \frac{\alpha ^4(\alpha -1)(2\alpha -1)k^4 \phi ^{4\alpha -6}}{\alpha ^7k^7\phi ^{7\alpha -7}} = \lim _{s\rightarrow \infty }\frac{(\alpha -1)(2\alpha -1)}{\alpha ^3 k^3 s^{-\frac{3\alpha -1}{\alpha }}\phi ^{3\alpha -1}}\\&= \frac{(\alpha -1)(2\alpha -1)}{\alpha ^3 k^3 k^{-\frac{3\alpha -1}{\alpha }}} = \frac{(\alpha -1)(2\alpha -1)}{\alpha ^3} k^{-\frac{1}{\alpha }}, \end{aligned} \end{aligned}$$

by which the limit in (iv) is also shown. \(\square \)

Recall that the signed curvature of the curve \(\Gamma \) is given by the formula

$$\begin{aligned} \gamma = \ddot{f}(\phi )\dot{\phi }^3. \end{aligned}$$
(A.5)

Finally, we prove a claim about the asymptotic behaviour of \(\gamma \) and its derivatives up to the second order, in the limit \(s\rightarrow \infty \).

Proposition A.3

Let the signed curvature \(\gamma :\overline{{\mathbb {R}}}_+\rightarrow {\mathbb {R}}\) be as in (A.5). Then there exist \(g_j\in {\mathbb {R}}\), \(j=0,1,2\), such that:

  1. (i)

    \(\lim _{s\rightarrow \infty }s^{\frac{2\alpha -1}{\alpha }} \gamma = g_0\),

  2. (ii)

    \(\lim _{s\rightarrow \infty }s^{\frac{3\alpha -1}{\alpha }} {\dot{\gamma }} = g_1\),

  3. (iii)

    \(\lim _{s\rightarrow \infty }s^{\frac{4\alpha -1}{\alpha }} \ddot{\gamma } = g_2\).

Proof

The first and the second derivatives of the signed curvature \(\gamma \) are given by

$$\begin{aligned} \begin{aligned} {\dot{\gamma }}&= 3{\dot{\phi }}^2\ddot{\phi }\ddot{f}(\phi ) +{\dot{\phi }}^4 \dddot{f}(\phi ),\\ \ddot{\gamma }&= 6\dot{\phi }\ddot{\phi }^2\ddot{f}(\phi ) +3\dot{\phi }^2\dddot{\phi }\ddot{f}(\phi ) +7\dot{\phi }^3\ddot{\phi }\dddot{f}(\phi ) +\dot{\phi }^5 f^{(4)}(\phi ).\\ \end{aligned} \end{aligned}$$

Hence, using the notation \(\kappa := \alpha (\alpha -1)k\) we infer that on the interval \([R,\infty )\) the following relations hold:

$$\begin{aligned} \begin{aligned} \gamma&= \kappa \phi ^{\alpha -2}\dot{\phi }^3,\\ {\dot{\gamma }}&= \kappa \left[ 3\phi ^{\alpha -2}\dot{\phi }^2\ddot{\phi }+(\alpha -2)\phi ^{\alpha -3}\dot{\phi }^4\right] ,\\ \ddot{\gamma }&= \kappa \Big [ \phi ^{\alpha -2} \big (6\dot{\phi }\ddot{\phi }^2 +3\dot{\phi }^2\dddot{\phi }\big ) + 7(\alpha -2)\phi ^{\alpha -3} \dot{\phi }^3\ddot{\phi }+(\alpha -2)(\alpha -3)\phi ^{\alpha -4} \dot{\phi }^5\Big ]. \end{aligned} \end{aligned}$$

Eventually, existence of finite limits in (i)-(iii) directly follows from Proposition A.2 (i)-(iv). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exner, P., Lotoreichik, V. Spectral Asymptotics of the Dirichlet Laplacian on a Generalized Parabolic Layer. Integr. Equ. Oper. Theory 92, 15 (2020). https://doi.org/10.1007/s00020-020-2571-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-020-2571-x

Keywords

Navigation